img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (3): 423-432.doi: 10.11872/j.issn.1005-2518.2023.03.128

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Element Geochemical Characteristics and Significance of Ore,Wall Rock and Stratum in Fuwen Gold Deposit,Hainan

Wenwei CUI1(),Huixia CHAO1(),Hujun HE1,Xingke YANG1,Junjie YANG1,Haolei ZHU1,Xu WU2   

  1. 1.School of Earth Science and Resources, Chang’an University, Xi’an 710054, Shaanxi, China
    2.Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
  • Received:2022-09-27 Revised:2023-02-09 Online:2023-06-30 Published:2023-07-20
  • Contact: Huixia CHAO E-mail:869934539@qq.com;chaohuixia1@163.com

Abstract:

The Fuwen gold deposit is located in Fuwen County,central and northern Hainan Province,and also in the northern margin of the Wuzhishan fold belt of the South China fold system.The Early Cretaceous Lumuwan Formation (K1l) is mainly exposed in the ore district.The structure in this area is developed,the magmatic volcanic movement is more frequent,the gold mineralization points are more,and the metallogenic geological conditions are better.Geological and mineral work was carried out earlier in the area,including geophysical exploration,geochemical exploration,mineral exploration,etc.,but these works focused on the ore fabric characteristics,sulfide characteristics,ore-forming fluid characteristics and isotope date of the deposit,and the research methods of element geochemical testing of gold deposits are less involved.In order to further explore the source of ore-forming materials of Fuwen gold deposit,this paper analyzed the main,trace and rare earth elements of quartz vein type ore,clastic sedimentary rock and magmatic rock of Lumuwan formation.The chemical analysis of the main components of the clastic sedimentary rocks in Lumuwan Formation shows that the weathering and alteration of the source area are weak,which reflects that the sedimentary rocks were first deposited in the active tectonic belt,and the provenance is mainly felsic rocks.The results of chemical analysis of rare earth elements show that REE is characterized by enriched LREE,lost HREE,and right-inclined normalized curve patterns,and the standardized distribution curves of REE in each sample are basically the same.It is inferred that the ore has homology with strata and rock masses.The results of trace element chemical analysis show that the ore,Lumuwan Formation strata and rock mass (quartz diorite,fine-grained granite) are significantly lost in Ba,Nb,Sr,Hf and enriched in Rb,Th,U,Pb,Sm,and their distribution trends are similar.Comprehensive analysis shows that the formation of Fuwen gold ore body in Hainan is closely related to Lumuwan strata and rock mass.Both of them provide ore-forming materials for the formation of ore bodies,and the deposit type is a magmatic hydrothermal deposit.

Key words: material source, geochemistry, trace element, REE, magmatic hydrothermal gold deposit, Fuwen gold deposit

CLC Number: 

  • P595

Fig.1

Geological map of Fuwen area(modified after Zhang et al.,2007;Chao et al.,2016)"

Fig.2

Geological map of Fuwen mining area (modified after Wu,2017)"

Fig.3

Microphotographs of ores in Fuwen gold mine"

Table 1

Contents and ratios of major elements in clastic sedimentary rocks of the Lumuwan Formation"

岩性样品编号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5
无矿化长石石英杂砂岩GH164.100.6613.518.310.052.345.091.113.110.15
GH267.090.5312.264.630.101.607.031.543.330.12
GH366.620.5714.335.030.112.463.613.132.470.13
GH469.250.6812.935.090.102.612.971.523.310.15
GH563.610.5810.264.820.161.9313.172.092.070.14
GH667.190.5212.144.960.121.886.923.001.850.12
黄铁矿化砂岩GH766.020.5310.394.470.121.8310.320.433.220.07
GH869.760.5111.674.270.081.835.660.513.580.08
平均值66.710.5712.195.200.112.066.851.672.870.12
上地壳平均值66.000.6515.204.500.082.204.203.903.400.15
岩性样品编号H2O+TotalAl2O3/TiO2K2O/Na2OFe2O3/K2OSiO2/Al2O3CIAPIAICV
无矿化长石石英杂砂岩GH11.4699.8920.472.802.674.7471.7182.411.23
GH21.689.9123.132.161.395.4765.6774.351.07
GH31.4499.9025.140.792.044.6562.1465.451.17
GH41.3099.9119.012.181.545.3667.0675.991.14
GH51.1099.9317.690.992.336.2062.1466.211.32
GH61.2099.9023.350.622.685.5360.7363.171.25
黄铁矿化砂岩GH72.3099.7019.607.491.396.3571.8089.291.05
GH82.06100.0122.887.021.195.9871.7388.800.96
平均值1.5799.8921.413.011.815.4766.6275.711.15
上地壳平均值---------

Table 2

Content and parameters of rare earth elements in rock (ore) samples of Fuwen gold mine"

岩性样品编号LaCePrNdSmEuGdTbDyHoErTmYb
石英闪长岩D043-135.4667.699.0034.075.811.756.420.834.550.892.530.362.15
细粒花岗岩D043-232.1460.338.0130.025.281.515.910.794.460.892.610.412.37
石英脉型矿石D050-219.7535.654.4515.592.480.532.550.261.410.250.790.120.70
碎屑沉积岩ZK1102-XT129.6857.817.6528.655.131.535.690.764.260.822.390.352.10
碎屑沉积岩ZK1503-XT124.6747.935.6922.883.990.924.210.422.870.531.560.231.29
碎屑沉积岩ZK1902-XT124.6248.786.0724.244.190.944.380.453.090.551.670.241.34
碎屑沉积岩ZK1903-XT138.5283.659.5737.957.101.667.640.975.891.033.240.452.65
碎屑沉积岩ZK2704-XT131.3858.777.1227.064.570.774.900.583.600.692.010.311.83
岩性样品编号LuY∑REELREEHREEL/HδEuδCe(La/Yb)N(La/Sm)N(Gd/Yb)N(Sm/Yb)N
石英闪长岩D043-10.3422.91171.86153.7918.078.510.870.8711.143.842.422.90
细粒花岗岩D043-20.3923.03155.13137.317.837.700.820.869.163.832.022.39
石英脉型矿石D050-20.117.0084.6478.456.1912.670.640.8619.075.012.953.80
碎屑沉积岩ZK1102-XT10.3421.65147.14130.4416.707.810.860.889.553.642.202.62
碎屑沉积岩ZK1503-XT10.2115.96117.4106.0811.329.370.680.9212.923.892.643.32
碎屑沉积岩ZK1902-XT10.2217.45120.78108.8411.949.120.660.9212.423.702.653.35
碎屑沉积岩ZK1903-XT10.4429.63200.76178.4522.318.000.681.009.823.422.342.87
碎屑沉积岩ZK2704-XT10.3020.05143.89129.6714.229.120.500.8911.594.322.172.68

Fig.4

Standardized distribution pattern diagram of rare earth element (REE) chondrites (base map after Taylor et al.,1985)"

Table 3

Content and parameters of trace elements in rock(ore) samples of Fuwen gold mine"

样品编号LiBeScVCrCoNiCuZnGaRbSrYZrNbCd
D043-18.062.0721.31189.3069.7053.4419.2314.55103.8023.47156.821092.6022.91125.9911.710.29
D043-28.662.2113.9890.8642.2359.3916.172.7371.2520.77359.79486.8623.03190.8410.810.39
D050-297.792.062.8035.469.1447.439.7503.6159.2713.42205.5127.097.0064.444.320.52
ZK1102-XT17.411.8315.90143.9029.4330.7211.7411.9880.2419.82205.42669.7121.65181.099.880.37
ZK1503-XT14.611.886.3871.8235.3824.4713.927.1459.1013.71330.50103.0115.96153.388.530.83
ZK1902-XT124.151.5811.66111.4038.9329.1814.1244.9252.1514.14208.77489.2117.45145.228.340.29
ZK1903-XT15.502.6019.3199.8957.2217.6135.223.4347.0324.73519.13259.3429.63148.0413.600.28
ZK2704-XT15.791.696.76101.4033.2821.4413.139.1381.8715.41289.55179.9120.05148.609.471.02
样品编号CsBaLaSmHoHfTaBiThUY/HoTh/UTh/ScCr/ZrNb/Ta
D043-11.83615.9335.465.810.894.001.020.039.051.5725.845.760.420.5511.51
D043-25.54847.9632.145.280.895.481.150.2013.594.4225.913.070.970.229.38
D050-23.99196.3019.752.480.251.980.600.117.801.8628.224.192.790.147.21
ZK1102-XT14.60415.1829.685.130.825.120.970.1413.222.8626.554.620.830.1610.17
ZK1503-XT14.86493.2824.673.990.534.600.961.8210.482.9130.123.611.640.238.90
ZK1902-XT14.83469.8124.624.190.554.160.950.3410.412.5631.734.070.890.278.76
ZK1903-XT111.01704.0638.527.101.034.611.570.2817.734.6128.763.840.920.398.67
ZK2704-XT14.440429.4431.384.570.694.461.110.0515.453.3629.064.592.290.228.53

Fig.5

Normalized spider diagram of trace elements in primitive mantle (base map after Sun et al.,1989)"

Fig.6

CIV-ICV diagram of clastic sedimentary rocks of the Lumuwan Formation(base map after Nesbitt et al.,1982;Cox et al.,1995)"

Fig.7

Classification map of clastic sedimentary rocks of the Lumuwan Formation(base map after Herron,1988)"

Bhat M I, Ghosh S K,2001,Geochemistry of the 2.51 Ga old Rampur group pelites,western Himalayas:Implications for their provenance and weathering[J].Precambrian Research,108(1/2):1-16.
Chao Huixia, Han Xiaohui, Yang Zhihua,et al,2016.New exploration of geotectonic characteristics of Hainan Island [J].Earth Science Frontiers,23(4):200-211.
Cox R, Lowe D R, Cullers R L,1995.The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J].Geochimica et Cosmo-chimica Acta,59(14):2919-2940.
Cullers R L, Podkovyrov V N,2002.The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group,southeastern Russia[J].Precambrian Research,117(3/4):157-183.
Fedo C M, Wayne Nesbitt H, Young G M,1995.Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J].Geology,23(10):921-924.
Gao H, Huang Y, Nix W D,et al,1999.Mechanism-based strain gradient plasticity—I.Theory[J].Journal of the Mecha-nics and Physics of Solids,47(6):1239-1263.
Girty G H, Ridge D L, Knaack C,et al,1996.Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California[J].Journal of Sedimentary Research,66(1):107-118.
Herron M M,1988.Geochemical classification of terrigenous sands and shales from core or log data[J].Journal of Sedi-mentary Research,58(5):820-829.
Liao Xiangjun, Wang Ping’an, Ding Shijiang,et al,2005.Main minerogenetic series and metallogenic characteristics on Hainan Island[J].Journal of Geomechanics,(2):187-194.
McLennan S M, Hemming S R, Taylor S R,et al,1995.Early Proterozoic crustal evolution:Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks,southwestern North America[J].Geochimica et Cosmoc-himica Acta,6:1153-1177.
Nesbitt H W, Young G M,1982.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,299:715-717.
Nesbitt H W, Young G M,1984.Prediction of some weathering trends of plutonic and volcanic rocks based on thermod-ynamic and kinetic considerations[J].Geochimica et Cosmochimica Acta,48(7):1523-1534.
Sun S S, McDonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composi-tion and processes[J].Geological Society,London,Special Publications,42(1):313-345.
Taylor S R, McLennan S M,1985.The continental crust:Its composition and evolution [J].The Journal of Geology,94(4):57-72.
Taylor S R, McLennan S M,1995.The geochemical evolution of the continental crust[J].Reviews of Geophysics,33(2):293-301.
Van de Kamp P C, Leake B E,1985.Petrography and geochemistry of feldspathic and mafic sediments of the northeast-ern Pacific margin[J].Earth and Environmental Science Transactions of the Royal Society of Edinburgh,76(4):411-449.
Wei Jun, Wang Ende, Yekai Men,et al,2018.Characteristics of trace rare earth elements of Xiaotongjiapuzi gold deposit[J].Journal of Northeastern University(Natural Science),39(5):689-692,721.
Wu Chuanjun, Xu Deru, Fu Yangrong,et al,2011.Study on metallogenic regularity and metallogenic mechanism of important types of gold deposits in Hainan Island[J].Acta Mineralogica Sinica,31(Supp.1):873-874.
Wu Xu,2017.Geological-Geophysical-Geochemical Characteristics and Prospecting Direction of one Gold Deposit,in Hainan,China[D].Xi’an:Chang’an University.
Zhang Xiaowen, Qin Haican, Fu Yangrong,2007.Ore character of Fuwen gold deposit in Ding’an,Hainan Province[J].Journal of Earth Sciences and Environment,(1):26-29.
Zhong Dongqiu,1994.Discussion on geological characteristics and genesis of Fuwen gold deposit in Hainan Province[J].Gold Geological Technology,(4):18-21.
Zhou Yueqiang,2015.Genesis of Metabasites and Their Relationship with Gold Mineralization in the Baolun Gold Deposit,Hainan Province[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
晁会霞,韩孝辉,杨志华,等,2016.对海南岛大地构造特征的新探索[J].地学前缘,23(4):200-211.
廖香俊,王平安,丁式江,等,2005.海南岛主要成矿系列与矿床成矿规律研究[J].地质力学学报,(2):187-194.
魏军,王恩德,门业凯,等,2018.小佟家堡子金矿床微量稀土元素特征[J].东北大学学报(自然科学版),39(5):689-692,721.
吴传军,许德如,傅杨荣,等,2011.海南岛重要类型金矿床成矿规律与成矿机制研究[J].矿物学报,31(增1):873-874.
吴旭,2017.海南定安某金矿地质物化探特征与找矿方向探讨[D].西安:长安大学.
张小文,覃海灿,傅杨荣,2007.海南定安富文金矿床矿石特征[J].地球科学与环境学报,(1):26-29.
钟东球,1994.海南省富文金矿床地质特征及成因探讨[J].黄金地质科技,(4):18-21.
周岳强,2015.海南省抱伦金矿变质基性岩成因及与金成矿作用关系[D].广州:中国科学院广州地球化学研究所.
[1] Zhixiang LIU,Kai WANG,Xiaocong YANG,Chuanchuan WAN,Yucheng ZHOU. Reliability Analysis of Intelligent Shoveling System Based on Fuzzy Fault Tree and Monte Carlo Method [J]. Gold Science and Technology, 2023, 31(3): 477-486.
[2] Jiantao SI,Desheng BAI,Zunqun XIAO,Shuiping LI,Dong QI,Jin SUN. Geological Characteristics and Mineralization Era of Geita Greenstone Belt in Tanzania [J]. Gold Science and Technology, 2023, 31(3): 387-395.
[3] Wencai WANG,Junpeng LI,Chuangye WANG,Shijiang CHEN,Peng WANG. Acoustic Emission Characteristics and Damage Evolution of Green Sandstone Under External Loads [J]. Gold Science and Technology, 2023, 31(3): 516-530.
[4] Shuitai XU,Beifei YUAN,Hengqi HU,Li CHEN. Quantitative Evaluation of China’s Green Mine Construction Policies—Analysis Based on PMC Index Model [J]. Gold Science and Technology, 2023, 31(2): 271-281.
[5] Linlin LIU,Jun CHEN,Zaifeng YANG,Lijuan DU,Yanbing JI,Lulin ZHENG. Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits [J]. Gold Science and Technology, 2023, 31(2): 219-231.
[6] Hao ZHANG,Li QING,Shili QIU,Yongyuan KOU,Yunlin GUO,Shengyan XIA. Application of Three-dimensional Laser Scanning in Extracting Rock Mass Structure Information of Tunnel [J]. Gold Science and Technology, 2023, 31(2): 313-322.
[7] Xiaoni CUN,Yushan XUE,Yuliang WANG,Xinwei LIU. Typomorphic Characteristics and Prospecting Significance of Pyrite in Longtougou Gold Deposit,Shaanxi Province [J]. Gold Science and Technology, 2023, 31(1): 64-77.
[8] Yong ZHANG,Aikui ZHANG,Shuyue HE,Zhigang LIU,Yongle LIU,Peng ZHANG,Feifei SUN. Age,Petrogenesis and Tectonic Significance of Granodiorite in Kudeerte Gold Deposit,Qimantage Area,East Kunlun [J]. Gold Science and Technology, 2023, 31(1): 1-14.
[9] Zhenliang CAO,Xuelong LIU,Shoukui LI,Sihan LIU,Fanglan LI,Bowen ZHOU. Comparison of Geochemical Characteristics Between Yanshanian Ore-bearing Granites in Northwest Yunnan and Global Adakites [J]. Gold Science and Technology, 2023, 31(1): 15-25.
[10] Hua WANG,Shaohao ZOU,Long CHEN,Deru XU,Xilian CHEN,Xuena WANG,Haodong FENG. Trace Element Characteristics of Zircon and Apatite Metallogenic in Rocks of Hukeng Tungsten Deposit in Western Jiangxi Province:Implications for Petrogenesis and Mineralization [J]. Gold Science and Technology, 2022, 30(6): 848-865.
[11] Jianguo WANG,Shizhen ZHANG,Jia XING,Zhinan WANG,Shengyun WEI,Jian HU. Geochemical Characteristics and Geological Significance of Ore-bearing Pegmatites in the Wulan Chakabeishan Area [J]. Gold Science and Technology, 2022, 30(6): 809-821.
[12] Jia XING,Jianguo WANG,Zhinan WANG,Jian HU,Shengyun WEI. Geochemical Composition and Genetic Analysis of Gabbro of Saibagou Gold Deposit,Qinghai Province [J]. Gold Science and Technology, 2022, 30(5): 664-675.
[13] Yupeng ZHANG,Dongyan SHI,Mingqi LV,Chenglu LI,Kun ZHANG,Wei TANG. Application Effect of Rock Debris Geochemical Survey in Prospecting in Sandaowanzi Shallow Overburden Area,Heilongjiang Province [J]. Gold Science and Technology, 2022, 30(5): 651-663.
[14] Liangyin GUO,Wanfei JIANG,Zhaofa SONG,Xiaoguang LIU,Jinchao ZHANG. Large Diameter Long Hole Cutoff Slot Blasting Method for Sublevel Open Stoping with Delayed Filling in Xincheng Gold Mine [J]. Gold Science and Technology, 2022, 30(4): 585-593.
[15] Feng GAO,Yindong HE,Xin LI. Application Research of TRT Technology in the Detection of Goaf in an Underground Mine [J]. Gold Science and Technology, 2022, 30(3): 333-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed