img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (2): 219-231.doi: 10.11872/j.issn.1005-2518.2023.02.132

Previous Articles     Next Articles

Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits

Linlin LIU1,2(),Jun CHEN1,2,3(),Zaifeng YANG1,2,Lijuan DU1,2,3,Yanbing JI1,2,Lulin ZHENG4   

  1. 1.College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
    2.Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
    3.State Key Laboratory of Ore Deposit Geochemistry, Guiyang 550081, Guizhou, China
    4.Mining College of Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2022-09-30 Revised:2022-11-28 Online:2023-04-30 Published:2023-04-27
  • Contact: Jun CHEN E-mail:13048576651@163.com;chenjun@gzu.edu.cn

Abstract:

Yunnan-Guizhou-Guangxi region,one of the most important gold mineralization areas in China,hosts many high temperature magmatic hydrothermal gold (copper) deposits,such as Pulang gold-bearing porphyry copper deposit,Beiya and Yaoan gold deposits,and low temperature hydrothermal gold deposits,namely carlin-type gold deposit,such as Badu,Nibao and Shuiyindong gold deposits.A lot of chemical studies of minerals,such as magnetite,pyrite and apatite have been carried out,and the abundant mineralogical geochemical data of trace elements in situ have been accumulated. However,the source materials and formation process of the deposits are still be disputed.Therefore,further statistical and comparative analyses of these data may provide a basis for revealing metallogenic information and guiding prospecting exploration.Due to the unique chemical characteristics,apatite can better preserve the important information of magma-hydrothermal evolution process,and is often used to define the fine metallogenic process of ore deposits.In this paper,the trace elements of hydrothermal apatite in high-temperature magma-hydrothermal deposits(Yao’an gold deposit and Pulang gold-bearing copper deposit) and low-temperature carlin-type gold deposits(Badu and Nibao gold deposits) have been collected and analyzed.It is found that the apatite in the high-temperature alkali-rich porphyry gold (copper) deposit is characterized by automorphic shape,high F and Cl contents,enriched LREE,and depleted HREE.In contrast,the apatite in the low-temperature carlin-type gold deposits is characterized by hypautomorphic and xenomorphic shapes,low F and Cl contents,enriched MREE.In addition,the δEu-δCe binary diagram and chondrite-normalized REE patterns revealed that the carlin-type gold deposits have higher oxygen fugacity than magmatic hydrothermal copper and gold deposits.Combined with the geochemical analysis of rare earth elements of stibnite in the Youjiang Basin,it is concluded that the enrichment characteristics of MREE in apatite(including fluorite and calcite) indicate that the low-temperature mineralizing fluid may be related to the special basin basement rock. In conclusion,apatite has unique geochemical characteristics in high temperature-medium and low temperature gold deposits,which can effectively reveal the type of ore deposit and the evolution process of ore-forming fluid.

Key words: apatite, trace elements, ore-forming fluid, carlin-type gold deposit, magmatic hydrothermal copper and gold deposits

CLC Number: 

  • P618.51

Fig.1

Location distribution and structural map of high-low temperature hydrothermal gold deposits in Yunnan-Guizhou-Guangxi region(modified after Zhu et al.,2020)"

Fig.2

Middle rare earth (MREE) enrichment characteristics in fluorite,apatite and calcite,associated with antimony-gold mineralization in the low-temperature hydrothermal ore concentration area of Youjiang Basin"

Table 1

Characteristic values of some geochemical elements of apatite from different gold deposits in the Yunnan-Guizhou-Guangxi region"

矿床名称元素
FClF/ClδEuδCe
姚安金矿3.4290.210717.240.701.44
普朗斑岩铜矿3.34080.33589.950.450.92
八渡卡林型金矿3.0228130.0035863.661.310.97
泥堡金矿2.90.0047250.830.64

Fig.3

Diagram of F and Cl in apatite from different deposits in Yunnan-Guizhou-Guangxi region"

Fig.4

Diagram of δEu-δCe in apatite from different deposits in Yunnan-Guizhou-Guangxi region"

Fig.5

Distribution patterns of rare earth elements(average value) related to gold mineralization in apatite from different gold deposits in Yunnan-Guizhou-Guangxi region"

Table 2

Rare earth element(REE)content of stibnite in Qinglong antimony deposit(×10-6)"

样品编号稀土元素
LaCePrNdSmEuGdTbDyHoErTmYbLu
DJ-1622.90.2500.5100.1100.0390.1500.291.100.0330.0670.0200.0580.019
DSC-2601.80.1800.3000.0440.0110.0470.170.710.0060.0130.0030.0210.003
GL-12491.20.1300.2100.0540.0210.0450.221.100.0060.0060.0020.0130.002
J1-10531.130.0850.0490.019-0.0110.140.890.0030.0120.0020.025-
J1-23531.20.0980.0640.022-0.0110.241.400.0030.0030.0040.019-
J1-3571.20.1200.0650.0460.0080.0440.150.990.0060.0150.0020.019-
LBC-1481.30.1200.2300.0480.0140.0740.220.980.0100.0250.0060.028-
LBC-14400.90.0960.1200.0410.0100.0530.010.190.0150.0340.0050.0380.005
LBC-18501.20.1110.1200.0480.0020.0300.230.890.0080.0100.0030.0100.006
LBC-3320.690.0590.0060.0070.0020.002-0.120.0040.0040.0020.0220.006
LBC-4451.40.1300.1300.0340.0020.0300.211.100.0030.0180.0030.023-
LBD-13482.20.3101.2000.2800.0820.1900.251.300.0180.0310.0060.0250.003
TK-2451.10.0910.0740.0420.0030.0370.220.670.0080.0140.0020.018-
TK-6501.20.0910.0560.0260.0050.0150.241.100.0020.0070.0030.013-
J1-15521.20.1000.0500.0140.0020.0220.351.100.0020.0050.0030.0120.002
Andersson S S, Wagner T, Jonsson E,et al,2019.Apatite as a tracer of the source,chemistry and evolution of ore-forming fluids:The case of the Olserum-Djupedal REE-phosphate mineralisation,SE Sweden[J].Geochimica et Cosmochimica Acta,255:163-187.
Ansberque C, Chew D M, Drost K,2021.Apatite fission-track dating by LA-Q-ICP-MS imaging[J].Chemical Geology,560:119977.
Ansberque C, Mark C, Caulfield J T,et al,2019.Combined in-situ determination of halogen (F,Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS:A potential new provenance tool[J].Chemical Geology,524:406-420.
Bau M, Dulski P,1996.Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations,Transvaal supergroup South Africa[J].Precambrian Research,79:37-55.
Bi Xianwu, Hu Ruizhong, Peng Jiantang,et al,2005.Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions[J].Acta Petrologica Sinica,21(1):113-124.
Bilal B A, Becker P,1979.Complex formation of trace elements in geochemical systems—II.Stability of rare earths fluoro complexes in fluorite bearing model system at various ionic strengths[J].Journal of Inorganic and Nuclear Chemistry,41(11):1607-1608.
Cao M J, Li G M, Qin K Z,et al,2012.Major and trace element characteristics of apatites in granitoids from Central Kazakhstan:Implications for petrogenesis and mineralization[J].Resource Geology,62(1):63-83.
Chen J, Huang Z L, Yang R D,et al,2021a.Gold and antimony metallogenic relations and ore-forming process of Qinglong Sb(Au) deposit in Youjiang basin,SW China:Sulfide trace elements and sulfur isotopes[J].Geoscience Frontiers,12(2):605-623.
Chen J, Yang R D, Du L J,et al,2018a.Mineralogy,geochemistry and fluid inclusions of the Qinglong Sb-(Au) deposit,Youjiang basin(Guizhou,SW China)[J].Ore Geology Reviews,92:1-18.
Chen J, Yang R D, Du L J,et al,2020.Multistage fluid sources and evolution of Qinglong Sb-(Au) deposit in northern margin of Youjiang basin,SW China:REE geochemistry and Sr-H-O isotopes of ore-related jasperoid,quartz and fluorite[J].Ore Geology Reviews,127:103851.
Chen L, Zhang Y,2018b.In situ major-,trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit,NE China:Constraints on the petrogenetic-metallogenic features[J].Ore Geology Reviews,94:93-103.
Chen M H, Bagas L, Liao X,et al,2019.Hydrothermal apatite SIMS Th Pb dating:Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao,SW China[J].Lithos,324/325:418-428.
Chen X L, Huang W T, Chen L,et al,2021b.Controlling factors of different Late Cretaceous granitoid-related mineralization between western margin of the Yangtze Block and the neighbor Yidun arc[J].Ore Geology Reviews,139:104554.
Chen X L, Leng C B, Zou S H,et al,2021c.Geochemical compositions of apatites from the Xuejiping and Disuga porphyries in Zhongdian arc:Implications for porphyry Cu mineralization[J].Ore Geology Reviews,130:103954.
Chu M F, Wang K L, Griffin W L,et al,2009.Apatite composition:Tracing petrogenetic processes in transhimalayan granitoids[J].Journal of Petrology,50:1829-1855.
Deng J, Wang Q F, Li G J,2017.Tectonic evolution,superimposed orogeny,and composite metallogenic system in China[J].Gondwana Research,50:216-266.
Deng J, Wang Q F, Li G J,et al,2014.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J].Gondwana Research,26 (2):419-437.
Ding T, Ma D S, Lu J J,et al,2015.Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province,Shi-Hang zone,China:Implications for petrogenesis and metallogenesis[J].Ore Geology Reviews,69:104-117.
Duan D F, Jiang S Y, Tang Y J,et al,2021.Chlorine and sulfur evolution in magmatic rocks:A record from amphibole and apatite in the Tonglvshan Cu-Fe(Au) skarn deposit in Hubei Province,south China[J].Ore Geology Reviews,137:104312.
Flynn R T, Burnham C W,1978.An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts[J].Geochimica et Cosmochimica Acta,42(6):685-701.
Ge Liangsheng, Guo Xiaodong, Zou Yilin,et al,2002.Geology and genesis of gold deposit related to alkali rich magmatism in Yao’an,Yunnan Province[J].Geology and Resources,11(1):29-37.
Gosselin D C, Smith M R, Lepel E A,et al,1992.Rare earth elements in chloride-rich groundwater,Palo Duro Basin,Texas,USA[J].Geochimica et Cosmochimica Acta,56:1495-1505.
Guo J H, Leng C B, Zhang X C,et al,2020.Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region,northwestern Yunnan,SW China[J].Ore Geology Reviews,116:103245.
Haas J R, Shock E L, Sassani D C,1995.Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J].Geochimica et Cosmochimica Acta,59(21):4329-4350.
Hu R Z, Chen W T, Xu D,et al,2017.Reviews and new metallogenic models of mineral deposits in South China:An introduction[J].Journal of Asian Earth Sciences,137:1-8.
Hu R Z, Su W C, Bi X W,2002.Geology and geochemistry of carlin-type gold deposits in China[J].Mineralium Deposita,37:378-392.
Jia F D, Zhang C Q, Liu H,et al,2020.In situ major and trace element compositions of apatite from the Yangla skarn Cu deposit,southwest China:Implications for petrogenesis and mineralization[J].Ore Geology Reviews,127:103360.
Jia Liqiong, Dong Guochen, Wang Liang,et al,2011.Research sta-tus of apatite genetic mineralogy[C]//Proceedings of the 13th Annual Academic Conference of the Chinese Society of Mineral and Petrology Geochemistry.Guangzhou:Chinese Society for Mineralogy Petrology and Geochemistry.
Keppler H,1996.Constraints from partitioning experiments on the composition of subduction-zone fluids[J].Nature,380:237-240.
Li Yong, Mo Xuanxue, Yu Xuehui,et al,2011.Zircon U-Pb dating of several selected alkali-rich porphyries from the Jinshajiang-Ailaoshan fault zone and geological significance[J].Geoscience,25(2):189-200.
Liu Jianzhong, Yang Chengfu, Wang Zepeng,et al,2017.Geological study of Shuiyindong gold deposit in Zhenfeng County,Guizhou Province[J].Geological Survey of China,4(2):32-41.
Louvel M, Bordage A, Testemale D,et al,2015.Hydrothermal controls on the genesis of REE deposits:Insights from an in situ XAS study of Yb solubility and speciation in high temperature fluids (T<400℃)[J].Chemical Geology,417:228-237.
Lu J, Chen W, Ying Y C,et al,2021.Apatite texture and trace element chemistry of carbonatite-related REE deposits in China:Implications for petrogenesis[J].Lithos,398/399:106276.
Migdisov A A, Bychkov A Y, Williams-Jones A E,et al,2014.A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems:Implications for copper porphyry ore formation[J].Geochimica et Cosmochimica Acta,129:33-53.
Nayebi N, Esmaeily D, Chew D M,et al,2021.Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran),with implications for the Chadormalu iron-apatite deposit[J].Ore Geology Reviews,132:104054.
Pan L C, Hu R Z, Bi X W,et al,2020.Evaluating magmatic fertility of Paleo-Tethyan granitoids in eastern Tibet using apatite chemical composition and Nd isotope[J].Ore Geology Reviews,127:103757.
Pan Y M, Michael E F,2002.Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors[J].Reviews in Mineralogy and Geochemistry,48(1):12-40.
Peng Jiantang, Hu Ruizhong, Jiang Guohao,2003.Samarium-Neodymium isotope system of fiuorites from the Qinglong antimony deposit,Guizhou Province:Constraints on the mineralizing age and ore-forming materials’ sources[J].Acta Petrologica Sinica,19(4):785-791.
Peng Jiantang, Hu Ruizhong, Qi Liang,et al,2002.REE geochemistry of fluorite from the Qinglong antimony deposit and its geological implications[J].Chinese Journal of Geology,37(3):277-287.
Pickering J, Matthews W, Enkelmann E,et al,2020.Laser ablation(U-Th-Sm)/He dating of detrital apatite[J].Chemical Geology,548:119683.
Qian L, Wang Y, Xie J,et al,2019.The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province,China:A perspective from apatite geochemistry[J].Solid Earth Sciences,4:178-189.
Qu P, Li N B, Niu H,et al,2019.Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range,NE China[J].Lithos,348/349:105207.
Qu P, Li N B, Niu H,et al,2021.Difference in the nature of ore-forming magma between the Mesozoic porphyry Cu-Mo and Mo deposits in NE China:Records from apatite and zircon geochemistry[J].Ore Geology Reviews,135:104218.
Sawlowicz Z,2013.REE and their relevance to the development of the Kupferschiefer copper deposit in Poland[J].Ore Geology Reviews,55:176-186.
She Haidong, Fan Hongrui, Hu Fangfang,et al,2018.Migration and precipitation of rare earth elements in the hydrothermal fluids[J].Acta Petrologica Sinica,34(12):3567-3581.
Su W C, Hu R Z, Xia B,et al,2009.Calcite Sm-Nd isochron age of the Shuiyindong carlin-type gold deposit,Guizhou,China[J].Chemical Geology,258(3/4):269-274.
Su Wenchao, Zhu Luyan, Ge Xi,et al,2015.Infrared microthermometry of fluid inclusions in stibnite from the Dachang antimony deposit,Guizhou[J].Acta Petrologica Sinica,31(4):918-924.
Sun M, Lin S F, Zhang F F,et al,2021.Post-ore change and preservation of the late Paleozoic Tuwu porphyry Cu deposit in eastern Tianshan,NW China:Constraints from geology and apatite fission track thermochronology[J].Ore Geology Reviews,137:104297.
Sun S J, Yang X Y, Wang G J,et al,2019.In situ elemental and Sr-O isotopic studies on apatite fromthe Xu-Huai intrusion at the southern margin of the North China Craton:Implications for petrogenesis and metallogeny[J].Chemical Geology,510:200-214.
Tan Q P, Xia Y, Wang X Q,et al,2017.Carbon-oxygen isotopes and rare earth elements as an exploration vector for carlin-type gold deposits:A case study of the Shuiyindong gold deposit,Guizhou Province,SW China[J].Journal of Asian Earth Sciences,148:1-12.
Tan Q P, Xia Y, Xie Z J,et al,2015.Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong carlin-type gold deposit,Guizhou,China[J].Ore Geology Reviews,69:140-156.
Taylor S R, McLennan S M,1985.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Editor.
Teiber H, Marks M A W, Wenzel T,et al,2014.The distribution of halogens(F,Cl,Br) in granitoid rocks[J].Chemical Geology,374/375:92-109.
Teiber H, Scharrer M, Marks M A W,et al,2015.Equilibrium partitioning and subsequent re-distribution of halogens among apatite-biotite-amphibole assemblages from mantle-derived plutonic rocks:Complexities revealed[J].Lithos,220/221/222/223:221-237.
Wang Chenguang, Yang Liqiang, He Wenyan,2017.Apatite trace element and halogen compositions from the Beiya gold deposit,in western Yunnan and geological significance[J].Acta Petrologica Sinica,33(7):2213-2224.
Wang Guozhi, Hu Ruizhong, Su Wenchao,2002.Geochemical constraint on ore fluid from fluorite in Qinglong antimony deposit,south-western Guizhou[J].Mineral Deposits,21(Supp.1):1028-1030.
Wang Shouxu, Zhang Xingchun, Qin Chaojian,et al,2007.Fluid inclusions in quartz veins of Pulang porphyry copper deposit,Zhongdian,northwestern Yunnan,China[J].Geochemica,36(5):467-478.
Wang Y N, Cai K, Sun M,et al,2018.Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track(AFT) dating:Implication for the preservation of epithermal deposits in the ancient orogenic belt[J].Ore Geology Reviews,100:111-132.
Wang Z, Tan Q P, Xia Y,et al,2021.Sm-Nd isochron age constraints of Au and Sb mineralization in southwestern Guizhou Province,China[J].Minerals,11(2):100.
Wei D T, Zhou T F, Xia Y,et al,2022.Ore fluid origin recorded by apatite chemistry:A case study on altered dolerite from the Badu carlin-type gold deposit,Youjiang Basin,SW China[J].Ore Geology Reviews,143:104745.
Wood S A,1990.The aqueous geochemistry of the rare-earth elements and yttrium:2.Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure[J].Chemical Geology,88(1):99-125.
Xiao X, Zhou T F, White N C,et al,2021.Porphyry Cu mineralization processes of Xinqiao deposit,Tongling ore district:Constraints from the geochronology and geochemistry of zircon,apatite,and rutile[J].Ore Geology Reviews,138:104340.
Xie Xianyang, Feng Dingsu, Chen Maohong,et al,2016.Fluid inclusion and stable isotope geochemistry study of the Nibao gold deposit,Guizhou and insights into ore genesis[J].Acta Petrologica Sinica,32(11):3360-3376.
Xing Kai, Shu Qihai,2021.Applications of apatite in study of ore deposits:A review[J].Mineral Deposits,40(2):189-205.
Xing Kai, Shu Qihai, Zhao Hesen,et al,2018.Geochemical characteristics and geological significance of apatite in Pulang porphyry copper deposit,western Yunnan[J].Acta Pe-trologica Sinica,34(5):1427-1440.
Xu Y M, Jiang S Y, Zhu J X,2021.Factors controlling the formation of large porphyry Cu deposits:A case study from the Jiurui ore district of Middle-Lower Yangtze River Metallogenic Belt using in situ zircon and apatite chemistry from syn-mineralization intrusions[J].Ore Geology Reviews,133:104082.
Zeng Pusheng, Li Wenchang, Wang Haiping,et al,2006.The Indosinian lPulang superlarge porphyry copper deposit in Yunnan,China:Petrology and chronology[J].Acta Petrologica Sinica,22(4):989-1000.
Zeng Pusheng, Mo Xuanxue, Yu Xuehui,2002.Nd,Sr and Pb isotopic characteristics of the alkaline-rich porphyries in western Yunnan and its compression strike-slip setting[J].Acta Petrologica et Mineralogica,21(3):231-241.
Zhang F H, Li W B, White N C,et al,2020.Geochemical and isotopic study of metasomatic apatite:Implications for gold mineralization in Xindigou,northern China[J].Ore Geology Reviews,127:103853.
Zhang S Y, Yang L Q, He W Y,et al,2021a.Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions:A case study at Pulang porphyry Cu-Au deposit,China[J].Ore Geology Reviews,139:104509.
Zhang Shuo, Jian Xing, Zhang Wei,2018.Sedimentary provenance analysis using detrital apatite:A review[J].Advances in Earth Science,33(11):1142-1153.
Zhang X M, Sun C Y, Xu W L,et al,2021b.Geochemistry of apatites from Mesozoic granitoids in the northeastern North China Craton and their petrogenetic implications[J].Lithos,402/403:106198.
Zhang Yuquan, Xie Yingwen,1997.Chronology and Nd,Sr isotopic characteristics of alkali rich intrusive rocks in Ailao-shan Jinshajiang[J].Science in China,27(4):289-293.
Zheng Y F,1996.Oxygen isotope fractionations involving apatites:Application to paleotemperature determination[J].Chemical Geology,127(1):177-187.
Zheng Yulin, Zhang Changqing, Liu Huan,et al,2021.Apatite chemical feature of Yaoan gold deposit in western Yunnan and its geological significance[J].Mineral Deposits,40(1):156-168.
Zhou Qiushi, Wang Rui,2020.Advances in chlorine isotope geochemistry[J].Earth Science Frontiers,27(3):42-67.
Zhu J, Zhang Z C, Santosh M,et al,2020.Carlin-style gold province linked to the extinct Emeishan plume[J].Earth and Planetary Science Letters,530:115940.
Zhu Xiaoqing, Wang Zhonggang, He Yan,et al,2004.REE content and distribution in apatite and its geological tracing significance[J].Chinese Rare Earths,25(5):41-45.
Zou H, Xiao B, Gong D X,et al,2022.Origin and tectonic setting of Pingqiao fluorite-lithium deposit in the Guizhou,southwest Yangtze Block,China[J].Ore Geology Reviews,143:104755.
毕献武,胡瑞忠,彭建堂,等,2005.姚安和马厂箐富碱侵入岩体的地球化学特征[J]岩石学报,21(1):113-124.
葛良胜,郭晓东,邹依林,等,2002.云南姚安与富碱岩浆活动有关的金矿床地质及成因[J].地质与资源,11(1):29-37.
贾丽琼,董国臣,王梁,等,2011.磷灰石成因矿物学研究现状[C]//中国矿物岩石地球化学学会第13届学术年会论文集.广州:中国矿物岩石地球化学学会.
李勇,莫宣学,喻学惠,等,2011.金沙江—哀牢山断裂带几个富碱斑岩体的锆石 U-Pb 定年及地质意义[J].现代地质,25(2):189-200.
刘建中,杨成富,王泽鹏,等,2017.贵州省贞丰县水银洞金矿床地质研究[J].中国地质调查,4(2):32-41.
彭建堂,胡瑞忠,蒋国豪,2003.萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J].岩石学报,19(4):785-791.
彭建堂,胡瑞忠,漆亮,等,2002.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学,37(3):277-287.
佘海东,范宏瑞,胡芳芳,等,2018.稀土元素在热液中的迁移与沉淀[J].岩石学报,34(12):3567-3581.
苏文超,朱路艳,格西,等,2015.贵州晴隆大厂锑矿床辉锑矿中流体包裹体的红外显微测温学研究[J].岩石学报,31(4):918-924.
王晨光,杨立强,和文言,2017.滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义[J].岩石学报,33(7):2213-2224.
王国芝,胡瑞忠,苏文超,2002.黔西南晴隆锑矿萤石对成矿流体的地球化学限定[J].矿床地质,21(增1):1028-1030.
王守旭,张兴春,秦朝建,等,2007.滇西北中甸普朗斑岩铜矿流体包裹体初步研究[J].地球化学,36(5):467-478.
谢贤洋,冯定素,陈懋弘,等,2016.贵州泥堡金矿床的流体包裹体和稳定同位素地球化学研究及其矿床成因意义[J].岩石学报,32(11):3360-3376.
邢凯,舒启海,2021.磷灰石在矿床学研究中的应用[J].矿床地质,40(2):189-205.
邢凯,舒启海,赵鹤森,等,2018.滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义[J].岩石学报,34(5):1427-1440.
曾普胜,李文昌,王海平,等,2006.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征[J].岩石学报,22(4):989-1000.
曾普胜,莫宣学,喻学惠,2002.滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景[J].岩石矿物学杂志,21(3):231-241.
张硕,简星,张巍,2018.碎屑磷灰石对沉积物源判别的指示[J].地球科学进展,33(11):1142-1153.
张玉泉,谢应雯,1997.哀牢山—金沙江富碱侵入岩年代学和Nd,Sr同位素特征[J].中国科学:地球科学,27(4):289-293.
郑瑜林,张长青,刘欢,等,2021.滇西姚安金矿床磷灰石化学特征及指示意义[J].矿床地质,40(1):156-168.
周秋石,王瑞,2020,氯同位素地球化学研究进展[J].地学前缘,27(3):42-67.
朱笑青,王中刚,黄艳,等,2004.磷灰石的稀土组成及其示踪意义[J].稀土,25(5):41-45.
[1] Hua WANG,Shaohao ZOU,Long CHEN,Deru XU,Xilian CHEN,Xuena WANG,Haodong FENG. Trace Element Characteristics of Zircon and Apatite Metallogenic in Rocks of Hukeng Tungsten Deposit in Western Jiangxi Province:Implications for Petrogenesis and Mineralization [J]. Gold Science and Technology, 2022, 30(6): 848-865.
[2] Jianzhong LIU,Zepeng WANG,Chengfu YANG,Junhai LI,Lulin ZHENG,Fa’en Chen,Qinping TAN,Zhuojun XIE,Weifang SONG,Liangyi XU,Songtao LI,Dafu WANG,Yongjun QIN,Yuhong YANG,Xiaoyong WANG. Discriminant Index and Significance of Structural Body Alteration of Carlin-type Gold Deposits in Yunnan-Guizhou-Guangxi and Its Surrounding Areas,China [J]. Gold Science and Technology, 2022, 30(4): 532-539.
[3] Xiaopeng CHI,Jiayan XU,Shuiping ZHONG,Xiuhua CHEN. Research Progress of Microalloyed Gold-based Materials [J]. Gold Science and Technology, 2022, 30(1): 141-150.
[4] Songtao LI,Jianzhong LIU,Yong XIA,Zhuojun XIE,Qinping TAN,Zepeng WANG,Guanghong ZHOU,Chengfu YANG,Minghua MENG,Lijin TAN,Xiaoyong WANG,Junhai LI,Liangyi XU,Dafu WANG. Tectono-geochemistry Weak Mineralization Information Extraction Method and Its Application in the Carlin-type Gold Accumulation Area of South-western Guizhou [J]. Gold Science and Technology, 2021, 29(1): 53-63.
[5] Yunzhong QIN, Haijun SONG. Prospecting Model and Metallogenic Prediction of Yandan-Yantang Gold Deposit in Leye County,Guangxi [J]. Gold Science and Technology, 2020, 28(3): 317-327.
[6] Ziqi XIONG, Xiling LIU, Zhixian LI, Weiya LI, Xing ZENG. Solidification Effect of Two Curing Agents on Heavy Metals in Xiangtan Manganese Mine Area Soil [J]. Gold Science and Technology, 2019, 27(5): 762-769.
[7] Jie XIN,Wentian MI,Yuqing GUAN,Zhong XI,Xuesong ZHANG. Metallogenic Characteristics and Metallogenic Model of the Gold Deposits in Huisenwulaxi Area of Ejin Banner,Inner Mongolia [J]. Gold Science and Technology, 2018, 26(6): 718-728.
[8] JIAO Xueyao,FAN Xiaolong,YU Pinghui,JIANG Guohao,XIONG Wenbo,CHENG Zhiyan,MA Jinlong. He-Ar Isotopic System of Fluid Inclusions in Pyrite from the Changba Lead-Zinc Deposit in Gansu Province [J]. Gold Science and Technology, 2016, 24(4): 47-53.
[9] LI Taibing,LI Yongguang,WANG Xianlin,SONG Genghai. Metallogenic Fluid Characteristics and Mineralization of Jinshan Gold Deposit in Shandong Province [J]. Gold Science and Technology, 2015, 23(6): 10-16.
[10] LI Yifan,LI Hongkui,TANG Qiyun,ZHUO Chuanyuan,GENG Ke,LIANG Taitao. Typomorphic Characteristics and Geological Significance of Pyrite in Jiudian Gold Deposit,Shandong Province [J]. Gold Science and Technology, 2015, 23(2): 45-50.
[11] YAN Jun,XIA Yong,TAN Qinping,WANG Zepeng,XIE Zhuojun,WANG Jingteng,ZHANG Hongxin. Geological and Geochemistry Characteristics and Metallogenic Predition of Carlin-type Gold Deposit in the Southeast Margin of Laizishan Anticline,Southwest of Guizhou Province [J]. Gold Science and Technology, 2015, 23(2): 28-37.
[12] LI Qiang,GAO Jinggang. Characteristics of Primary Halo of Qiuling Ore Block in Jinlongshan Gold Belt,Shaanxi Province [J]. Gold Science and Technology, 2014, 22(6): 1-6.
[13] YU Chun,XIONG Tao,ZHAO Weixin. Application of Derivative Index Method on IP Sounding of Yangshan Gold Mine [J]. Gold Science and Technology, 2014, 22(3): 43-47.
[14] ZHANG Bin,CHEN Wen,YU Shun. Implication of the History to Dating the Carlin-type Gold Deposit of Nevada,USA [J]. Gold Science and Technology, 2014, 22(1): 1-7.
[15] HE Qiuli,ZHANG Hongchen,SONG Peng,ZHANG Zongchao,GUO Yaojia,WANG Likao,WU Peng. Geological Characteristics and Prospecting Criteria of  Paoli Carlin-Type Gold Deposits in Guangxi Province [J]. Gold Science and Technology, 2013, 21(6): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!