img

Wechat

Adv. Search

Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (4): 555-563.doi: 10.11872/j.issn.1005-2518.2021.04.213

• Mining Technology and Mine Management • Previous Articles    

Study on Damage Constitutive Model of Backfill Under Uniaxial Compression Loading

Shaobo JIN(),Kewei LIU(),Jin HUANG,Shaohu JIN   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-12-09 Revised:2021-03-15 Online:2021-08-31 Published:2021-10-08
  • Contact: Kewei LIU E-mail:jinshaobo@csu.edu.cn;kewei_liu@126.com

Abstract:

With the increasing emphasis on mine safety exploitation and the environment protection,filling mining method has been widely applied in many underground mines around the world.The damage and strength criterion of backfill is the most basic research content of filling mining and the research on the damage and strength of backfill is the most basic research content of backfill material.Thus,it is of great significance to the underground engineering to determine the mechanical properties and damage characteristics of backfill materials.In oder to reveal the damage mechanism of backfill material under uniaxial loading,firstly,the five successive stages of the stress-strain curves of backfill material under uniaxial loading were analyzed,such as initial compaction stage(OA),elastic deformation stage(AB),strain hardening stage(BC),strain softening stage (CD) and residual strength stage(DE),then taking the damage variable as the internal variable that affecting the mechanical properties of backfill materials,and the classical damage constitutive model of backfill material under uniaxial loading was derived based on the statistical damage theory,maximum-tensile strain yield criterion and strain equivalent hypothesis.Due to the backfill material contains a large number of micro defects such as micro pores and micro cracks,and there is a compaction process of the backfill specimen in the initial loading stage,a compaction hardening coefficient was proposed and introduced to the classical damage constitutive model and the modified damage constitutive model was established,which makes up the defects that the classical damage constitutive model cannot explain the compaction process of backfill in initial compression stage.The modified damage constitutive model was used to fit a variety of experimental data and was compared with the fitted results of the classical damage constitutive model.The results show that the modified damage constitutive model can not only simulate the compaction process of the backfill specimen in the initial loading process,but also be consistent with the stress-strain experimental data,and the fitting results are much better than those of the classical damage constitutive model,which fully indicates the feasibility of the modified damage constitutive model.The influence of the change of fitting parameters on the shape of the fitting curves was also studied and the control variable method was used to change one of the parameters to study the change trend of the shape of the fitting curves.The results of this study show that three different types of fitting parameters have different effects on the shape of the fitting curves.

Key words: filling body, uniaxial loading, damage variables, damage constitutive model, initial loading stage, compaction coefficient, damage evolution

CLC Number: 

  • TD853

Fig.1

Typical stress-strain curve of backfill material under the uniaxial compression condition"

Fig.2

Determination method of εcvalue"

Fig.3

Stress-strain test data and fitting curves of cemented tailings backfill under uniaxial load"

Table 1

Fitting parameters and related physical mechanical parameters of cemented tailings backfill"

参数数值参数数值
n0.858εc /(×10-20.326
a /(×10-20.584E/GPa0.413
m1.242R20.990

Fig.4

Uniaxial compression test data and fitting curves of full tailings backfill with different cement-sand ratios"

Table 2

Fitting parameters and related physical mechanical parameters of full tailings backfill with different cement-sand ratios"

灰砂比na /(×10-2mεc /(×10-2E /GPaR2
1∶40.7561.8761.5291.15610.1880.995
1∶60.8571.7541.3390.8940.1070.996
1∶80.8341.6601.3660.9340.0890.993
1∶100.8371.9291.7570.9340.0380.991

Fig.5

Uniaxial compression test data and fitting curves of cemented tailings backfill with different mass concentrations"

Table 3

Fitting parameters and related physical mechanical parameters of cemented tailings backfill with different mass concentrations"

胶结充填体 质量浓度/%na/ (×10-2mεc /(×10-2E/GPaR2
681.1801.0860.9720.4810.1520.988
701.3710.6870.7540.2070.1880.993
720.8610.9071.1470.5330.3070.982

Fig.6

Effect of parameters n on the shape of the fitting curves"

Fig.7

Effect of parameters a on the shape of the fitting curves"

Fig.8

Effect of parameters m on the shape of the fitting curves"

Al-Rub R K A,Kim S M,2010.Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture[J].Engineering Fracture Mechanics,77:1577-1603.
Cheng Aiping,Dai Shunyi,Zhang Yushan,al et,2019.Study on size effect of damage evolution of cemented backfill[J].Chinese Journal of Rock Mechanics and Engineering,38(Supp.1):3053-3060.
Ghirian A,Fall M,2013.Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments.Part I:Physical,hydraulic and thermal processes and characteristics[J].Engineering Geology,164:195-207.
Hou J F,Guo Z P,Liu W Z,al et,2020.Mechanical properties and meso-structure response of cemented gangue-fly ash backfill with cracks under seepage-stress coupling[J].Construction and Building Materials,250:118863.
Huang S B,Liu Q S,Cheng A P,al et,2018.A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J].Cold Regions Science and Technology,145:142-150.
Justo J,Castro J,Cicero S,al et,2017.Notch effect on the fracture of several rocks:Application of the theory of critical distances[J].Theoretical and Applied Fracture Mechanics,90:251-258.
Ke Yuxian,Wang Xinmin,Zhang Qinli,al et,2019.Strength determination of crude tailings backfill in deep mine based on non-linear constitutive model[J].Journal of Northeastern University(Natural Science),38(2):280-283.
Lemaitre J,1972.Evaluation of dissipation and damage in metals submitted to dynamic loading[J].Mechanical Behavior of Materials,76(6):540-549.
Lemaitre J,1985.A continuous damage mechanics model for ductile fracture[J].Journal of Engineering Materials and Technology,107(1):83-89.
Lin H,Xiong W,Xiong Z,al et,2015.Three-dimensional effects in a flattened Brazilian disk test[J].International Journal of Rock Mechanics and Mining Sciences,74:10-14.
Liu Yanzhang,Li Kaibing,Huang Shibing,al et,2019.Analysis of damage variables and specific energy evolution for cemented tailings backfill under uniaxial compression condition[J].Mining and Metallurgical Engineering,39(6):1-4.
Liu Zhixiang,Li Xibing,Dai Tagen,al et,2006.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,27(9):1442-1446.
Ren X D,Li J,2013.A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage[J].International Journal of Damage Mechanics,22(4):530-555.
Voyiadjis G Z,Kattan P I,2008.A comparative study of damage variables in continuum damage mechanics[J].International Journal of Damage Mechanics,18:315-340.
Wang Jie,Song Weidong,Tan Yuye,al et,2019.Damage constitutive model and strength criterion of horizontal stratified cemented backfill[J].Rock and Soil Mechanics,40(5):1731-1739.
Wang Y X,Shan S B,Zhang C,al et,2019a.Seismic response of tunnel lining structure in a thick expansive soil stratum[J].Tunnelling and Underground Space Technology,88:250-259.
Wang Y,Guo P,Lin H,al et,2019b.Numerical analysis of fiber-reinforced soils based on the equivalent additional stress concept[J].International Journal of Geomechanics,19(11):04019122.
Wang Yong,Wu Aixiang,Wang Hongjiang,al et,2019.Damage constitutive model of cemented tailing paste under initial temperature effect[J].Chinese Journal of Engineering,39(1):31-38.
Wu A,Wang Y,Wang H,al et,2015.Coupled effects of cement type and water quality on the properties of cemented paste backfill[J].International Journal of Mineral Processing,143:65-71.
Yang Shengqi,Xu Weiya,Wei Lide,al et,2004.Statistical constitutive model for rock damage under uniaxial compression and its experimental study[J].Journal of Hohai University(Natural Sciences),32(2):200-203.
Yi Xuefeng,Liu Chunkang,Wang Yu,2020.Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning[J].Rock and Soil Mechanics,41(10):3365-3373.
Zhang Chao,Yang Qijun,Cao Wengui,2019.Study of damage constitutive model of brittle rock considering post-peak stress dropping rate[J].Rock and Soil Mechanics,40(8):3099-3106.
Zhang Sherong,Song Ran,Wang Chao,al et,2019.Dynamic mechanical property analysis of roller-compacted concrete and damage constitutive model establishment[J].Journal of Central South University (Science and Technology),50(1):130-138.
Zhao Kui,Xie Wenjian,Zeng Peng,al et,2019.Experimental study on AE characteristics of cemented tailings backfill failure process with different concentration[J].Journal of Applied Acoustics,39(4):543-549.
Zhao Shuguo,Su Dongliang,Wu Wenrui,al et,2017.Study on damage model of backfill based on Weibull distribution under uniaxial compression[J].China Mining Magazine,26(2):106-111.
Zhou Y,Yu X,Guo Z Q,al et,2021.On acoustic emission characteristics,initiation crack intensity,and damage evolution of cemented paste backfill under uniaxial compression[J].Construction and Building Materials,269:121261.
程爱平,戴顺意,张玉山,等,2019.胶结充填体损伤演化尺寸效应研究[J].岩石力学与工程学报,38(增1):3053-3060.
柯愈贤,王新民,张钦礼,等,2019.基于全尾砂充填体非线性本构模型的深井充填强度指标[J].东北大学学报(自然科学版),38(2):280-283.
刘艳章,李凯兵,黄诗冰,等,2019.单轴压缩条件下尾砂胶结充填体的损伤变量与比能演化[J].矿冶工程,39(6):1-4.
刘志祥,李夕兵,戴塔根,等,2006.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,27(9):1442-1446.
汪杰,宋卫东,谭玉叶,等,2019.水平分层胶结充填体损伤本构模型及强度准则[J].岩土力学,40(5):1731-1739.
王勇,吴爱祥,王洪江,等,2019.初始温度条件下全尾胶结膏体损伤本构模型[J].工程科学学报,39(1):31-38.
杨圣奇,徐卫亚,韦立德,等,2004.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然科学版),32(2):200-203.
易雪枫,刘春康,王宇,2020.金属矿尾废胶结充填体破裂演化过程原位CT扫描试验研究[J].岩土力学,41(10):3365-3373.
张超,杨期君,曹文贵,2019.考虑峰值后区应力跌落速率的脆岩损伤本构模型研究[J].岩土力学,40(8):3099-3106.
张社荣,宋冉,王超,等,2019.碾压混凝土的动态力学特性分析及损伤演化本构模型建立[J].中南大学学报(自然科学版),50(1):130-138.
赵奎,谢文健,曾鹏,等,2019.不同浓度的尾砂胶结充填体破坏过程声发射特性试验研究[J].应用声学,39(4):543-549.
赵树果,苏东良,吴文瑞,等,2017.基于Weibull分布的充填体单轴压缩损伤模型研究[J].中国矿业,26(2):106-111.
[1] Lulu XU,Qinli ZHANG,Ru FENG. Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters [J]. Gold Science and Technology, 2021, 29(3): 421-432.
[2] Chunhui SONG, Xianglong LI, Jianguo WANG, Fei SONG. Experimental Study on the Effect of Pillar Blasting Mining on the Damage of Cemented Filling Body [J]. Gold Science and Technology, 2020, 28(4): 558-564.
[3] Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG. Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm [J]. Gold Science and Technology, 2019, 27(4): 581-588.
[4] Caixing SHI,Lijie GUO,Xinzheng CHEN. Experimental Study on the Law of Flow and Segregation of Filing Slurry in Stope [J]. Gold Science and Technology, 2018, 26(4): 520-527.
[5] CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98.
[6] CAO Shirong,XIAO Weijing,LI Yongxin,WANG Xiaojun,ZHUO Yulong,FENG Xiao . Study on AE Characteristics of Cyclic Loading and Unloading of Ballast Cemented Backfilling Body [J]. Gold Science and Technology, 2017, 25(3): 92-97.
[7] SHI Xiuzhi,FAN Yuqian,SHANG Xueyi. Strength Prediction of Filling Body Based on PCA and BP Neural Networks [J]. Gold Science and Technology, 2016, 24(3): 64-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!