Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (4): 555-563.doi: 10.11872/j.issn.1005-2518.2021.04.213
• Mining Technology and Mine Management • Previous Articles
Shaobo JIN(),Kewei LIU(),Jin HUANG,Shaohu JIN
CLC Number:
Al-Rub R K A,Kim S M,2010.Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture[J].Engineering Fracture Mechanics,77:1577-1603. | |
Cheng Aiping,Dai Shunyi,Zhang Yushan,al et,2019.Study on size effect of damage evolution of cemented backfill[J].Chinese Journal of Rock Mechanics and Engineering,38(Supp.1):3053-3060. | |
Ghirian A,Fall M,2013.Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments.Part I:Physical,hydraulic and thermal processes and characteristics[J].Engineering Geology,164:195-207. | |
Hou J F,Guo Z P,Liu W Z,al et,2020.Mechanical properties and meso-structure response of cemented gangue-fly ash backfill with cracks under seepage-stress coupling[J].Construction and Building Materials,250:118863. | |
Huang S B,Liu Q S,Cheng A P,al et,2018.A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J].Cold Regions Science and Technology,145:142-150. | |
Justo J,Castro J,Cicero S,al et,2017.Notch effect on the fracture of several rocks:Application of the theory of critical distances[J].Theoretical and Applied Fracture Mechanics,90:251-258. | |
Ke Yuxian,Wang Xinmin,Zhang Qinli,al et,2019.Strength determination of crude tailings backfill in deep mine based on non-linear constitutive model[J].Journal of Northeastern University(Natural Science),38(2):280-283. | |
Lemaitre J,1972.Evaluation of dissipation and damage in metals submitted to dynamic loading[J].Mechanical Behavior of Materials,76(6):540-549. | |
Lemaitre J,1985.A continuous damage mechanics model for ductile fracture[J].Journal of Engineering Materials and Technology,107(1):83-89. | |
Lin H,Xiong W,Xiong Z,al et,2015.Three-dimensional effects in a flattened Brazilian disk test[J].International Journal of Rock Mechanics and Mining Sciences,74:10-14. | |
Liu Yanzhang,Li Kaibing,Huang Shibing,al et,2019.Analysis of damage variables and specific energy evolution for cemented tailings backfill under uniaxial compression condition[J].Mining and Metallurgical Engineering,39(6):1-4. | |
Liu Zhixiang,Li Xibing,Dai Tagen,al et,2006.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,27(9):1442-1446. | |
Ren X D,Li J,2013.A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage[J].International Journal of Damage Mechanics,22(4):530-555. | |
Voyiadjis G Z,Kattan P I,2008.A comparative study of damage variables in continuum damage mechanics[J].International Journal of Damage Mechanics,18:315-340. | |
Wang Jie,Song Weidong,Tan Yuye,al et,2019.Damage constitutive model and strength criterion of horizontal stratified cemented backfill[J].Rock and Soil Mechanics,40(5):1731-1739. | |
Wang Y X,Shan S B,Zhang C,al et,2019a.Seismic response of tunnel lining structure in a thick expansive soil stratum[J].Tunnelling and Underground Space Technology,88:250-259. | |
Wang Y,Guo P,Lin H,al et,2019b.Numerical analysis of fiber-reinforced soils based on the equivalent additional stress concept[J].International Journal of Geomechanics,19(11):04019122. | |
Wang Yong,Wu Aixiang,Wang Hongjiang,al et,2019.Damage constitutive model of cemented tailing paste under initial temperature effect[J].Chinese Journal of Engineering,39(1):31-38. | |
Wu A,Wang Y,Wang H,al et,2015.Coupled effects of cement type and water quality on the properties of cemented paste backfill[J].International Journal of Mineral Processing,143:65-71. | |
Yang Shengqi,Xu Weiya,Wei Lide,al et,2004.Statistical constitutive model for rock damage under uniaxial compression and its experimental study[J].Journal of Hohai University(Natural Sciences),32(2):200-203. | |
Yi Xuefeng,Liu Chunkang,Wang Yu,2020.Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning[J].Rock and Soil Mechanics,41(10):3365-3373. | |
Zhang Chao,Yang Qijun,Cao Wengui,2019.Study of damage constitutive model of brittle rock considering post-peak stress dropping rate[J].Rock and Soil Mechanics,40(8):3099-3106. | |
Zhang Sherong,Song Ran,Wang Chao,al et,2019.Dynamic mechanical property analysis of roller-compacted concrete and damage constitutive model establishment[J].Journal of Central South University (Science and Technology),50(1):130-138. | |
Zhao Kui,Xie Wenjian,Zeng Peng,al et,2019.Experimental study on AE characteristics of cemented tailings backfill failure process with different concentration[J].Journal of Applied Acoustics,39(4):543-549. | |
Zhao Shuguo,Su Dongliang,Wu Wenrui,al et,2017.Study on damage model of backfill based on Weibull distribution under uniaxial compression[J].China Mining Magazine,26(2):106-111. | |
Zhou Y,Yu X,Guo Z Q,al et,2021.On acoustic emission characteristics,initiation crack intensity,and damage evolution of cemented paste backfill under uniaxial compression[J].Construction and Building Materials,269:121261. | |
程爱平,戴顺意,张玉山,等,2019.胶结充填体损伤演化尺寸效应研究[J].岩石力学与工程学报,38(增1):3053-3060. | |
柯愈贤,王新民,张钦礼,等,2019.基于全尾砂充填体非线性本构模型的深井充填强度指标[J].东北大学学报(自然科学版),38(2):280-283. | |
刘艳章,李凯兵,黄诗冰,等,2019.单轴压缩条件下尾砂胶结充填体的损伤变量与比能演化[J].矿冶工程,39(6):1-4. | |
刘志祥,李夕兵,戴塔根,等,2006.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,27(9):1442-1446. | |
汪杰,宋卫东,谭玉叶,等,2019.水平分层胶结充填体损伤本构模型及强度准则[J].岩土力学,40(5):1731-1739. | |
王勇,吴爱祥,王洪江,等,2019.初始温度条件下全尾胶结膏体损伤本构模型[J].工程科学学报,39(1):31-38. | |
杨圣奇,徐卫亚,韦立德,等,2004.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然科学版),32(2):200-203. | |
易雪枫,刘春康,王宇,2020.金属矿尾废胶结充填体破裂演化过程原位CT扫描试验研究[J].岩土力学,41(10):3365-3373. | |
张超,杨期君,曹文贵,2019.考虑峰值后区应力跌落速率的脆岩损伤本构模型研究[J].岩土力学,40(8):3099-3106. | |
张社荣,宋冉,王超,等,2019.碾压混凝土的动态力学特性分析及损伤演化本构模型建立[J].中南大学学报(自然科学版),50(1):130-138. | |
赵奎,谢文健,曾鹏,等,2019.不同浓度的尾砂胶结充填体破坏过程声发射特性试验研究[J].应用声学,39(4):543-549. | |
赵树果,苏东良,吴文瑞,等,2017.基于Weibull分布的充填体单轴压缩损伤模型研究[J].中国矿业,26(2):106-111. |
[1] | Lulu XU,Qinli ZHANG,Ru FENG. Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters [J]. Gold Science and Technology, 2021, 29(3): 421-432. |
[2] | Chunhui SONG, Xianglong LI, Jianguo WANG, Fei SONG. Experimental Study on the Effect of Pillar Blasting Mining on the Damage of Cemented Filling Body [J]. Gold Science and Technology, 2020, 28(4): 558-564. |
[3] | Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG. Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm [J]. Gold Science and Technology, 2019, 27(4): 581-588. |
[4] | Caixing SHI,Lijie GUO,Xinzheng CHEN. Experimental Study on the Law of Flow and Segregation of Filing Slurry in Stope [J]. Gold Science and Technology, 2018, 26(4): 520-527. |
[5] | CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98. |
[6] | CAO Shirong,XIAO Weijing,LI Yongxin,WANG Xiaojun,ZHUO Yulong,FENG Xiao . Study on AE Characteristics of Cyclic Loading and Unloading of Ballast Cemented Backfilling Body [J]. Gold Science and Technology, 2017, 25(3): 92-97. |
[7] | SHI Xiuzhi,FAN Yuqian,SHANG Xueyi. Strength Prediction of Filling Body Based on PCA and BP Neural Networks [J]. Gold Science and Technology, 2016, 24(3): 64-69. |
|