img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (4): 558-564.doi: 10.11872/j.issn.1005-2518.2020.04.180

• Mining Technology and Mine Management • Previous Articles     Next Articles

Experimental Study on the Effect of Pillar Blasting Mining on the Damage of Cemented Filling Body

Chunhui SONG1(),Xianglong LI1,2(),Jianguo WANG1,Fei SONG3   

  1. 1.Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space,Kunming 650093,Yunnan,China
    3.Sichuan Luhang Construction Co. ,Ltd. ,Chengdu 610000,Sichuan,China
  • Received:2019-11-08 Revised:2020-04-29 Online:2020-08-31 Published:2020-08-27
  • Contact: Xianglong LI E-mail:songch1994@163.com;lxl00014002@163.com

Abstract:

Based on the panel mining of Dahongshan Copper Mine,this paper attempts to solve the damage problem of adjacent cemented pillars.In order to determine the damage range of cement piles in the blasting and recovery of underground mines,the on-site cemented backfill of Dahongshan Copper Mine and the same strength of the pillar simulation materials were used to carry out the mine column blasting simulation test in the underground abandoned but safe roadway.Ultrasonic testing and post-explosion apparent crack observation method were used to investigate the damage law of cemented backfill under blasting load from two aspects of damage degree and crack propagation.The results show that the damage degree of the cemented backfill at the blasting distance R is 45~125 cm that is higher than that of the blasting core R is 145~205 cm;The crack at the cemented backing can be extended to 71.5 cm;In the model,the damage of cemented backfill is divided into stable zone,damage zone and failure zone.The damage degree of cemented backfill is 0≤D<0.07 in the stable zone,0.07≤D≤0.22 in the damaged zone,and 0.22<D≤1 in the failure zone.

Key words: blasting mining, cemented filling body, acoustic wave test, model test, damage range, blasting center distance

CLC Number: 

  • TD853.34

Fig.1

Drawing of mould design"

Fig.2

Physical drawing of mould after processing"

Table 1

Situation of filling body ratio in test area"

配比强度参数变形参数
水泥添加量/(kg·m-3浓度/%尾砂添加/(kg·m-3水添加量/(kg·m-3内聚力/MPa抗压强度/MPa抗拉强度/MPa体积模量/MPa剪切模量/MPa
150721 2175320.21.020.15218.4492.48

Table 2

Mechanical parameters of orebody in the 435 middle section"

岩石类型抗压强度/MPa湿抗拉强度/MPa湿剪切强度弹性模量/GPa泊松比
自然含水状态湿抗压强度内聚力/MPa内摩擦角
20线I2矿体72.751.65.18.445°47′86.80.26

Table 3

Simulation of orebody match ratio in the model"

材料比例质量/kg材料比例质量/kg
水泥1100.00粉煤灰0.5151.00
河沙2.79278.86硅粉0.17617.58
0.3636.00减水剂1.5%1.50

Fig.3

Post-pouring model"

Fig.4

Layout diagram of acoustic wave measuring points"

Table 5

Sound velocity values at different positions of the model before and after blasting(cm/s)"

测点模型1模型2模型3模型4
爆破前声波值爆破后声波值爆破前声波值爆破后声波值爆破前声波值爆破后声波值爆破前声波值爆破后声波值
1#1 7421 2861 5601 2101 8001 4371 7671 445
2#1 5901 3451 6701 4621 5551 3061 8071 597
3#1 8011 6521 7901 6661 6371 4721 7441 576
4#1 7201 6161 5901 4851 7561 6251 6251 487
5#1 7361 6381 7601 6661 7861 6831 6671 568
6#1 7451 6601 7001 6231 7561 7011 6131 596
7#1 6891 6211 5701 5101 6461 5961 7421 697
8#1 7141 6791 6401 5891 7271 6671 5961 526
9#1 5721 5311 7701 6881 6001 5631 7961 758

Table 6

Damage degree at different positions of model"

测点损伤值平均值
模型1模型2模型3模型4
1#0.4550.3980.3630.3310.387
2#0.2840.2340.2950.2190.258
3#0.1590.1340.1910.1830.167
4#0.1170.1280.1440.1630.138
5#0.1100.1040.1120.1150.110
6#0.0950.0890.0620.0210.067
7#0.0790.0750.0600.0510.066
8#0.0400.0610.0680.0860.064
9#0.0510.0910.0460.0420.058

Fig.5

Relationship between damage degree and distance to explosive’s center"

Fig.6

Crack propagation diagram"

1 严鹏,邹玉君,卢文波,等.基于爆破振动监测的岩石边坡开挖损伤区预测[J].岩石力学与工程学报,2016,35(3):538-548.
Yan Peng,Zou Yujun,Lu Wenbo,et al.Predicting the damage zone of rock slopes under blasting excavation based on vibration monitoring[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(3):538-548.
2 贾虎,徐颖.岩体开挖爆炸应力损伤范围研究[J].岩石力学与工程学报,2007,26(增1):3489-3492.
Jia Hu,Xu Ying.Study on stress damage zone in excavation of rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(Supp.1):3489-3492.
3 宋卫东,汪杰,谭玉叶,等.三轴加—卸载下分层充填体能耗及损伤特性[J].中国矿业大学学报,2017,46(5):1050-1057.
Song Weidong,Wang Jie,Tan Yuye,et al.Energy consumption and damage characteristics of stratified backfill under triaxial loading and unloading[J].Journal of China University of Mining and Technology,2017,46(5):1050-1057.
4 徐文彬,曹培旺,程世康.深地充填体断裂特性及裂纹扩展模式研究[J].中南大学学报(自然科学版),2018,49(10):2508-2518.
Xu Wenbin,Cao Peiwang,Cheng Shikang.Study on fracture characteristics and crack propagation mode of cemented backfill in deep mine[J].Journal of Central South University(Science and Technology),2018,49(10):2508-2518.
5 朱鹏瑞,宋卫东,曹帅,等.爆破动载下胶结充填体的张拉力学响应机制[J].采矿与安全工程学报,2018,35(03):605-611.
Zhu Pengrui,Song Weidong,Cao Shuai,et al.Tensile mechanical response mechanism of cemented backfills under blasting load[J].Journal of Mining and Safety Engineering,2018,35(3):605-611.
6 刘志祥,李夕兵.尾砂胶结充填体力学试验及损伤研究[J].金属矿山,2004,34(11):22-24.
Liu Zhixiang,Li Xibing.Mechanics test and damage study on cemented tailing filling[J].Metal Mine,2004,34(11):22-24.
7 费鸿禄,杨卫风,张国辉,等.金属矿山矿柱回采时爆破荷载下采空区的围岩稳定性[J].爆炸与冲击,2013,33(4):344-350.
Fei Honglu,Yang Weifeng,Zhang Guohui,et al.Surrounding rock stability of mined-out area under blast loading in metal mine pillar robbing[J].Explosion and Shock Waves,2013,33(4):344-350.
8 Hu K X,Kemeny J.A fracture mechanics analysis of the effect of backfill on the stability of cut and fill mine workings[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1994,31(3):231-241.
9 Liu Z X,LI X B,Dai T G,et al.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,2006,27(9):1442-1446.
10 Yu G B,Yang P,Chen Y Z.Study on damage constitutive model of cemented tailings backfill under uniaxial compression[J].Applied Mechanics and Materials,2013,353-356:379-383.
11 Taylor L M,Chen E P,Kuszmaul J S.Microcrack-induced damage accumulation in brittle rock under dynamic loading[J].Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320.
12 陈明,卢文波.爆炸应力波对新浇混凝土衬砌的影响研究[J].岩土力学,2008,29(2):455-459.
Chen Ming,Lu Wenbo.The influence of explosive stress wave on young concrete lining[J].Rock and Soil Mechanics,2008,29(2):455-459.
13 邓代强,杨耀亮,姚中亮.拉压全过程充填体损伤演化本构方程研究[J].采矿与安全工程学报,2006,23(4):485-488.
Deng Daiqiang,Yang Yaoliang,Yao Zhongliang.Research on constitutive equation of damage evolution of backfill based on the full tensile and compressive process[J].Journal of Mining and Safety Engineering,2006,23(4):485-488.
14 赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000,22(6):720-722.
Zhao Mingjie,Xu Rong.The rock damage and strength study based on ultrasonic velocity[J].Chinese Journal of Geotechnical Engineering,2000,22(6):720-722.
15 李云,刘霁.岩石中浅孔爆破特性的数值模拟[J].中南大学学报(自然科学版),2012,43(4):1519-1522.
Li Yun,Liu Ji.Numerical simulation on mechanical properties of shallow-hole blasting in rocks[J].Journal of Central South University(Science and Technology),2012,43(4):1519-1522.
16 王启睿,孔福利,范俊奇,等.高强砂浆材料爆炸作用下破坏分区试验研究[J].地下空间与工程学报,2018,14(6):1505-1511.
Wang Qirui,Kong Fuli,Fan Junqi,et al.Experimental study for destructive zone of high-strength mortar material under explosion effect[J].Chinese Journal of Underground Space and Engineering,2018,14(6):1505-1511.
17 张文煊,卢文波.龙滩水电站地下厂房开挖爆破损伤范围评价[J].工程爆破,2008,14(2):1-7.
Zhang Wenxuan,Lu Wenbo.Evaluation of blast-induced damage zone in excavation blasting of Longtan underground workshop[J].Engineering Blasting,2008,14(2):1-7.
18 中华人民共和国国家发展和改革委员会.水工建筑物岩石基础开挖工程施工技术规范:DL/T 5389-2007[M].北京:中国电力出版社,2009.
National Development and Reform Commission of the People’s Republic of China.Technical Specifications for Rock Foundation Excavation Engineering of Hydraulic Structures: DL/T 5389-2007[M].Beijing:China Electric Power Press,2009.
19 阳生权.爆破地震累积效应理论和应用初步研究[D].长沙:中南大学,2002.
Yang Shengquan.Study on Theory and Application of BlastingVibration Cumulative Effeets[D].Changsha:Cen-tral South University,2002.
20 褚怀保,杨小林,叶红宇,等.新浇混凝土爆破振动损伤累积规律模拟试验研究[J].煤炭学报,2018,43(9):2469-2475.
Chu Huaibao,Yang Xiaolin,Ye Hongyu,et al.Simulation experimental research on damage accumulation law of new concrete under multiple blasting vibration loads[J].Journal of China Coal Society,2018,43(9):2469-2475.
21 刘连生,钟清亮,闫雷,等.频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J].黄金科学技术,2018,26(6):750-760.
Liu Liansheng,Zhong Qingliang,Yan Lei,et al.Measurement of sound waves to study cumulative damage effect on saturated rock under frequent production blast loading[J].Gold Science and Technology,2018,26(6):750-760.
22 李允忠,王志亮,黄佑鹏,等.循环爆破载荷下岩石累积损伤效应研究[J].爆破,2019,36(2):47-53.
Li Yunzhong,Wang Zhiliang,Huang Youpeng,et al.Numerical study of cumulative damage effect of rock under cyclic blast loading[J].Blasting,2019,36(2):47-53.
[1] Haixu WANG, Qi ZONG, Haibo WANG, Mengxiang WANG. Water-uncouple Charge Blasting Technology for Diphead Roadway in Coalmine [J]. Gold Science and Technology, 2019, 27(5): 747-754.
[2] CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[2] YI Cun-Chang, CANG En-Guang. [J]. J4, 2010, 18(4): 58 -61 .
[3] LIU Jin-Feng, LIU Mo-Jiang, LI Ding-Kun, LI Tian-Dong. [J]. J4, 2010, 18(4): 80 -81 .
[4] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[5] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[6] ZHANG Yuan, ZHANG Hong-Xi. [J]. J4, 2010, 18(4): 12 -16 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[9] YUAN Dong-Cheng, XU Xiao-Feng. [J]. J4, 2010, 18(4): 47 -49 .
[10] YU Dongliang. Geochemial Characteristics and Prospect Direction of  the Gold in Manzhanggang Area of Qinghai Prov ince[J]. J4, 2008, 16(1): 52 -55 .