img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 1-18.doi: 10.11872/j.issn.1005-2518.2022.01.223

• 矿产勘查与资源评价 •    下一篇

藏南康马县布主金(锑)矿土壤地球化学异常信息提取及成矿预测

张宇1(),魏俊浩1,2,石文杰1,2(),李国猛1,周新琪1,毛国正3,刘成林3   

  1. 1.中国地质大学资源学院,湖北 武汉 430074
    2.固体矿产勘查国家级实验教学示范中心,湖北 武汉 430074
    3.西藏工程勘察施工(集团)有限责任公司,西藏 拉萨 850000
  • 收稿日期:2020-12-16 修回日期:2021-09-06 出版日期:2022-02-28 发布日期:2022-04-24
  • 通讯作者: 石文杰 E-mail:1090211618@qq.com;swjhaoo@126.com
  • 作者简介:张宇(1993-),男,贵州凯里人,硕士研究生,从事成矿规律与成矿预测研究工作。1090211618@qq.com
  • 基金资助:
    山东省煤田地质局基金项目“山东省牟平—乳山成矿带三维综合找矿模型构建与深部找矿预测”(鲁煤地科字[2019]4号);山东恒邦冶炼股份有限公司科研项目“山东省烟台市牟平区东道口矿区成矿规律研究及深部找矿预测项目”(2020026143)

Soil Geochemical Anomaly Information Extraction and Metallogenic Prediction of the Buzhu Gold(Antimony) Deposit in the Kangma County,South Tibet

Yu ZHANG1(),Junhao WEI1,2,Wenjie SHI1,2(),Guomeng LI1,Xinqi ZHOU1,Guozheng Mao3,Chenglin LIU3   

  1. 1.School of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China
    2.National Demonstration Center for Experimental Mineral Exploration Education, Wuhan 430074, Hubei, China
    3.Tibet Engineering Survey and Construction(Group)Co. , Ltd. , Lhasa 850000, Tibet, China
  • Received:2020-12-16 Revised:2021-09-06 Online:2022-02-28 Published:2022-04-24
  • Contact: Wenjie SHI E-mail:1090211618@qq.com;swjhaoo@126.com

摘要:

康马地区处于特提斯喜马拉雅构造域东段,是青藏高原具特色和重要的金(锑)成矿带。布主金(锑)矿处于EW向断裂与SN向断裂交会部位的康马地区,成矿地质条件良好。为解决布主地区的找矿问题,本文以藏南康马县布主金(锑)矿1∶1万土壤地球化学测量为研究对象,运用元素的变化系数及富集离散特征对研究区土壤地球化学测量的8种微量元素进行统计分析,论述了8种微量元素的成矿潜力,得出Au、Ag、As、Sb和Pb这5种微量元素具有较大的成矿潜力,并采用聚类分析、相关分析和因子分析研究元素组合规律,共划分了3组元素组合(Au-Ag-As-Sb组合、Pb-Zn组合和Hg-Cu组合)。应用平均值±3倍标准差的方法研究地球化学异常并确定其异常下限,结合衬度异常圈定法圈定了与Au元素相关性较好的主要元素综合异常7处(HS-1~HS-7),并结合区域成矿地质背景和研究区地质—地球化学特征,圈定了有利找矿靶区2处。经野外地质调查发现,靶区1发现褐铁矿化石英脉,局部发生强烈褐铁矿化,为下一步重点找矿地段,显示了土壤地球化学在本区找矿的有效性。

关键词: 金(锑)矿床, 地球化学特征, 衬度异常圈定法, 靶区圈定, 成矿预测, 康马县

Abstract:

Kangma area is located in the eastern part of the Tethys Himalayan tectonic domain,and it is a characteristic and important gold(antimony) metallogenic belt in the Qinghai-Tibet Plateau.Buzhu gold(antimony) deposit is located in the Kangma area where the EW trending fault and SN trending fault intersect,and the metallogenic geological conditions are good.In this paper,1∶10 000 soil geochemical survey of Buzhu gold(antimony) deposit in Kangma County,southern Tibet was studied.Eight trace elements from soil geochemical survey in the study area were analyzed statistically by using the coefficient of change of elements and the discrete characteristics of element enrichment.By discussing the metallogenic potential of eight trace elements and combining with the characteristics of Au,Ag,As,Sb and Pb with high coefficient of variation,large degree of dispersion and many mineralization in the study area,it is considered that Au is the main metallogenic element in the study area,and Ag,As,Sb and Pb can be used as important indicator elements to search for gold deposits in this area.Cluster analysis,correlation analysis and factor analysis were used to study the rule of element association.Three groups of element association were divided.The first group was the element association of Au,Ag,As and Sb,the second was the element association of Pb and Zn,and the third was the element association of Hg and Cu.Among them,the first group of Au,Ag,As,Sb element assemblage is the main ore-forming element assemblage in the study area,Au is the most important ore-forming element in the study area,Ag,As,Sb element is an important indicator element to search for gold deposits in the area,which has a good ore-prospecting prospect.The method of mean ±3 times standard deviation was used to study the geochemical anomalies and determine the lower limit of the anomalies.Combined with the contrast anomaly delineation method,seven major element comprehensive anomalies (HS-1~HS-7) with good correlation with gold elements were delineated.Combined with the regional metallogenic geological background and the geological-geochemical characteristics of the study area,two favorable prospecting target areas are delineated.The geochemical anomalies in the two target areas are significant,with prominent concentration centers and good combination of anomalies,which have great prospecting potential.Through the field geological survey,it was found that limonite fossil quartz vein was found in target area 1,and local intense limonitization occurred,which is a key ore prospecting area for the next step.

Key words: gold(antimony) deposit, geochemical characteristics, contrast anomaly delineation method, target area delineation, metallogenic prediction, Kangma County

中图分类号: 

  • P618.51

图1

研究区大地构造位置及区域地质简图(a)区域大地构造位置图[据张阳刚(2011)修改];(b)区域构造纲要图[据郑有业等(2012)修改];(c)区域地质简图(据1∶25万江孜幅、洛扎幅地质图修改);1.第四系;2.古近系;3.白垩系;4.侏罗系;5.三叠系;6.二叠系;7.石炭系;8.奥陶系;9.拉轨岗日岩群;10.中新世二云母二长花岗岩;11.中新世花岗闪长岩;12.辉绿玢岩脉;13.正断层;14.逆断层;15.左行断层;16.左行逆断层;17.湖泊;18.研究区;19.班公—怒江缝合带;20.印度河—雅鲁藏布江缝合带;21.主中央逆冲断裂;22.金沙江缝合带;23.高喜马拉雅构造带;24.特提斯喜马拉雅岩系;25.藏南拆离系"

图2

布主金(锑)矿地质简图[据李国猛(2020)修改]1.灰白色长石石英砂岩;2.灰白—灰黑色灰岩;3.黄褐色(泥)钙质板岩;4.灰黑色碎裂化泥(钙)质板岩夹灰岩;5.灰黑—黄褐色含褐铁矿化条带板岩;6.灰黑色碎裂化泥(钙)质板岩;7.断裂破碎带及编号;8.金矿体及编号;9.辉绿岩脉;10.闪长玢岩;11.石英脉;12.地质界线;13.推测断层;14.断层及编号;15.土壤地球化学测量范围"

表1

研究区土壤地球化学测量各元素分析方法及检出限"

分析方法元素及含量单位规范要求检出限实际检出限分析仪器
ICP-MSw(Au)/(×10-90.300.20ICP-MS电感耦合等离子体质谱仪
XRFw(Cu)/(×10-61.000.95X射线荧光光谱仪
w(Pb)/(×10-62.001.94
w(Zn)/(×10-610.002.54
ESw(Ag)/(×10-920.0010.20WP1平面光栅摄谱仪
AFSw(As)/(×10-61.000.29原子荧光分光光度计
w(Sb)/(×10-60.100.06
w(Hg)/(×10-95.001.27

表2

研究区土壤地球化学测量各元素分析测试流程"

测试指标测试样品处理方法测定方法
Cu、Pb、Zn4.0 g样品粉末压饼X荧光法(XRF)
Au10.0 g样品、王水溶样泡沫塑料吸附分离硫脲提取等离子体质谱法(ICP-MS)
As、Sb、Hg0.5000 g样品、1∶1王水溶样还原掩蔽剂(硫脲—抗坏血酸)预还原, KBH4还原、氢化法原子荧光法(AFS)
Ag0.1000 g样品加入0.1 g缓冲剂、一次射谱,用CCD检测器采集数据发射光谱法(ES)

表3

研究区土壤测量元素地球化学参数统计"

参数名称Au*AgAsSbHg*CuPbZn
元素质量分数最小值0.2130.002.080.061.394.304.705.35
元素质量分数最大值500.005 000.001 000.00100.001 000.00446.005 000.005 000.00
元素质量分数平均值9.63215.37111.485.5930.3129.4240.2591.28
元素背景值2.16112.7879.173.9524.4125.7726.2180.54
原始标准差33.10427.56126.447.6023.3420.82143.22135.59
背景标准差1.6464.7847.781.939.204.246.1013.53
原始变异系数CV13.441.991.131.360.770.713.561.49
背景变异系数CV20.760.560.600.490.380.160.230.17
CV1/CV24.523.551.892.772.034.4215.478.74
全国背景值2.0393.8213.291.4259.0625.5629.1977.17

图3

研究区土壤测量元素CV1和CV1/CV2变化系数解释图"

图4

研究区土壤测量元素R型聚类分析谱系图"

表4

研究区土壤地球化学测量元素相关性分析"

系数AuAgAsSbHgCuPbZn
Au1
Ag0.5631
As0.5880.6121
Sb0.2210.2580.3281
Hg0.1120.0540.0840.2511
Cu0.1380.0780.1810.0870.3821
Pb0.3940.4660.2680.1850.0420.0561
Zn0.4050.4470.3090.1820.0880.1510.8401

表5

研究区土壤地球化学测量元素正交旋转成分矩阵及因子方差贡献率"

元素成分
F1F2F3
Au0.7460.2970.042
Ag0.7570.367-0.052
As0.8740.0950.062
Sb0.519-0.0150.319
Hg0.0700.0020.843
Cu0.0650.0870.779
Pb0.2060.9300.011
Zn0.2120.9230.102
特征值3.1641.3921.095
方差贡献率/%39.55517.40613.687
累积方差贡献率/%39.55556.96170.648

表6

研究区土壤地球化学测量元素异常下限"

元素异常参数Au*AgHg*AsSbCuPbZn
标准离差1.6464.789.2047.781.934.246.1013.53
平均值(背景值)2.16112.7824.4179.173.9525.7726.2180.54
理论异常下限5.44242.3442.79174.737.8234.2538.40107.59
实际异常下限6.00250.0043.00180.008.0035.0040.00108.00
外带6.00250.0043.00180.008.0035.0040.00108.00
中带12.00500.0086.00360.0016.0070.0080.00216.00
内带24.001 000.00172.00720.0032.00140.00160.00432.00

图5

研究区元素地球化学异常图1.灰白色长石石英砂岩;2.灰白—灰黑色灰岩;3.黄褐色(泥)钙质板岩;4.灰黑色碎裂化泥(钙)质板岩夹灰岩;5.灰黑—黄褐色含褐铁矿化条带板岩;6.灰黑色碎裂化泥(钙)质板岩;7.断裂破碎带及编号;8.金矿体;9.辉绿岩脉;10.石英脉;11.地质界线;12.断层及编号"

表7

土壤地球化学异常特征组合基本地球化学参数"

异常编号异常元素样点数异常下限峰值异常均值面积/km2衬度值K规模
HS-1Au76187.037.160.0396.190.242
Ag82503 980.0824.830.0543.300.178
As61801 000.0580.830.0433.230.139
Pb2402 634.0249.600.0086.240.047
HS-2Au96397.059.560.0359.930.347
Ag312503 990.0673.120.1052.690.283
HS-3Au896416.046.030.3527.672.700
Ag192503 990.0673.120.0832.690.223
As1161801 000.0519.360.4612.891.330
Sb7869.122.060.0352.760.097
HS-4Au86168.077.450.01512.910.194
Ag62502 340.0925.720.0143.700.052
As61801 000.0632.700.0123.520.042
Pb7401 330.0228.470.0215.710.120
HS-5Au336500.048.160.1188.030.947
Ag462502 320.0349.700.1091.400.152
As881801 000.0322.190.2531.790.453
Sb168100.016.480.0662.060.136
Pb18405 000.0232.920.1185.820.687
HS-6Au8674.153.200.0348.870.301
Ag52504 410.01 083.740.0264.330.113
As181801 000.0357.230.0721.980.143
Pb10402 100.0251.800.3486.302.191
HS-7Au86328.053.030.0348.840.301
Ag72504 120.0911.390.0233.650.084
As181801 000.0320.080.0701.780.124
Sb9842.113.330.0241.670.040
Pb12402 550.0267.700.0356.690.236

图6

研究区元素综合异常图及靶区圈定1.灰白色长石石英砂岩;2.灰白—灰黑色灰岩;3.黄褐色(泥)钙质板岩;4.灰黑色碎裂化泥(钙)质板岩夹灰岩;5.灰黑—黄褐色含褐铁矿化条带板岩;6.灰黑色碎裂化泥(钙)质板岩;7.断裂破碎带及编号;8.金矿体及编号;9.地质界线;10.推测断层;11.断层及编号;12.土壤地球化学测量范围;13.Au异常线;14.Pb异常线;15.Sb异常线;16.Ag异常线;17.Hg异常线;18.Cu异常线;19.As异常线;20.Zn异常线;21.综合异常及编号;22.靶区及编号"

表8

研究区土壤地球化学测量综合异常分布特征"

异常编号面积/km2元素组合异常特征
HS-10.556Sb-Au-Hg-As-Ag-Cu-Zn异常区位于研究区西部。岩性主要为灰黑色泥钙质板岩夹灰岩、灰黑—灰白色板岩。Au、As、Ag、Cu、Zn元素套合较好,主成矿元素Au最高值为187.00×10-9,Ag最高值为3 980.00×10-6,As最高值为1 000.00×10-9,Sb异常规模较大
HS-20.184Au-Ag-Hg-Cu异常区位于研究区西部。岩性主要为灰黑色泥钙质板岩、灰黑—灰白色板岩等,小型辉绿岩脉广泛分布。Au元素具有较好的三级浓度分带,Au最高值为397.00×10-9,Ag、Cu、Hg仅有外带,异常规模较小
HS-30.871Sb-Au-Ag-As-Hg-Cu-Zn异常区位于研究区中北部。岩性主要为灰黑色泥钙质板岩夹灰岩、灰黑—灰白色板岩等,辉绿岩脉广泛分布。该异常是研究区内面积较大的异常,异常内部浓集中心较多,异常整体为SN-NE向,内部浓集中心方向较复杂,有NW向趋势。各元素浓集中心较对应。Au、As、Ag元素套合较好,As、Ag具有异常高峰值且有明显的三级分带。主成矿元素Au最高值为416.00×10-9,Ag最高值为3 990.00×10-6,As最高值为1 000.00×10-9
HS-40.055Au-Ag-Sb-Pb-Zn异常区位于研究区中部。岩性为灰黑色泥钙质板岩,NW向断裂破碎带穿过。Au、Sb、Ag、Pb、Zn元素套合非常好且有明显的三级分带,主成矿元素Au最高值为168.00×10-9,Ag最高值为2 340.00×10-6,Sb最高值为54.2×10-6,Pb最高值为1 330.00×10-6,Au异常规模较大
HS-51.236Au-As-Ag-Sb-Hg-Pb-Zn-Cu异常区位于研究区东北部。异常面积最大,呈NW走向,强度较大,浓集中心较多,套合性较好。岩性主要为灰黑色泥钙质板岩、灰黑色含褐铁矿条带板岩等。赋存Au-Ⅱ、Au-Ⅲ矿体的NW向断裂破碎带穿过。该异常为研究区与矿化蚀变对应性较好、强度较大的异常。覆盖了Au-Ⅱ、Au-Ⅲ矿体,且向东未封闭。Au、As、Ag、Pb、Zn元素套合较好,具有明显的三级分带,主成矿元素Au最高值为500.00×10-9,Ag最高值为2 320.00×10-6,As最高值为1 000.00×10-9,Pb最高值为5 000.00×10-6。其中,Au、Pb异常在该区有较好的指示意义
HS-60.113As-Au-Pb-Ag-Zn异常区位于研究区东部。岩性主要为灰黑色泥钙质板岩、黄褐色泥钙质板岩等,辉绿岩脉和硅化带发育。Au、Ag、Pb元素有明显的三级分带,异常套合一般。主成矿元素Au最高值为741.00×10-9,Ag最高值为4 410.00×10-6,As最高值为1 000.00×10-6,Pb最高值为2 100.00×10-6
HS-70.129As-Au-Pb-Zn-Ag-Cu-Sb-Hg异常区位于研究区东部。岩性主要为灰黑色含褐铁矿条带板岩、灰黑色泥钙质板岩等。SN向断裂带穿过。Au、As异常面积较大,As、Au、Ag、Sb、Hg高度浓集

图7

研究区靶区1土壤地球化学测量综合异常剖析图1.灰白色长石石英砂岩;2.灰黑色碎裂化泥(钙)质板岩夹灰岩;3.金矿体及编号;4.地质界线;5.辉绿岩脉;6.断层及编号"

图8

研究区靶区1矿化标志图"

图9

研究区靶区2土壤地球化学测量综合异常剖析图1.黄褐色(泥)钙质板岩;2.灰黑色碎裂化泥(钙)质板岩;3.灰黑色破碎化泥(钙)质板岩夹灰岩;4.辉绿岩脉;5.地质界线;6.断层及编号"

Blisniuk P M, Hacker B R, Glodny J, al et,2001.Normal faulting in central Tibet since at least 13.5 Myr ago[J].Nature,412(6847):628-632.
Dai Zuowen,2020.Study on Mineralization of Cuonadong Beryllium Sn-W Polymetallic Deposit in Tibet[D].Chengdu:Chengdu University of Technology.
Harrison T M, Grove M, Lovera O M, al et,1998.A model for the origin of Himalayan anatexis and inverted metamorphism[J].Journal of Geophysical Research:Solid Earth,103(B11):27017-27032.
Hou Z Q, Zhang H R,2015.Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J].Ore Geology Reviews,70:346-384.
Hu Qinghua, Xiao Xiaolin, Cao Shenghua, al et,2011.Anomaly threshold of geochemistry using the method of fractal content-area:A case study in Yongping area,Jiangxi Province[J].Journal of East China Institute of Technology (Natural Science Edition),34(2):107-110.
Huang Wenbin, Luo Xianrong, Liu Panfeng, al et,2020.Geochemical characteristics of stream sediments and ore prospecting prediction in the Shihuigou area,Qinghai Province[J].Bulletin of Geological Science and Technology,39(3):150-159.
Huang Xiaodong,2011.Study on Metallogenic Law and Prospecting Direction of the Jiangzi Gold-Antimony Metallogenic Belt in the Southern Tibet Detachment System[D].Chengdu:Chengdu University of Technology.
Lan Shuangshuang, Du Lü, Zeng Pan, al et,2019.Geochemical characteristics of soil and prospecting prediction of the Qiangzi region,Tibet[J].Contributions to Geology and Mi-neral Resources Research,34(2):286-293.
Li Fu, Ma Dongsheng, Ju Weiwei, al et,2017.Application of geochemical soil survey in a Cu-Pb-Zn polymetallic deposit in Indonesia[J].Journal of Geology,41(1):138-147.
Li Guangming, Zhang Linkui, Jiao Yanjie, al et,2017.First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt,southern Tibet[J].Mineral Deposits,36(4):1003-1008.
Li Guomeng, Jiang Wei, Shi Wenjie, al et,2020.Regularities of ore-controlling structures and exploration predictions of Buzhu Au(Sb) deposit in Kangma County,South Tibet,China[J].Earth Science,45(6):2117-2134.
Li Tong, Yuan Huaiyu, Wu Shengxi, al et,1999.Regional element abundances of continental crustobodies in China[J].Geotectonica et Metallogenia,23(2):101-107.
Lin Sen, Tao Chaoqun, Liu Lihui,2021.Soil geochemical anomaly characteristics and prospecting potential of Mingshujingnan gold deposit,Gansu Province[J].Journal of Guilin University of Technology,41(2):267-276.
Liu Guozheng,2014.Application and Effect of Soil Geochemical Exploration in Ore Prospecting in Bao-Ged-Wula District,Xinyouqi,Inner Mongolia[D].Shijiazhuang:Shijiazhuang University of Economics.
Liu Jinsong, Zou Xianwu, Tang Chaoyang, al et,2016.Geochemical characteristics of stream sediments and ore-prospecting orientation in Daba Mountain area[J].Geology in China,43(1):249-260.
Liu Ming, Wang Zizhang, 2020. Geochemical characteristics of stream sediments and exploration prospective of the Qiujidonggou gold deposit in Dulan County,Qinghai Province [J]. Gold Science and Technology,28(6): 837-845.
Mulch A, Chamberlain C P,2006.The Rise and Growth of Tibet[J].Nature,439(7077):670-671.
Nie Fengjun, Hu Peng, Jiang Sihong, al et,2005.Type and temporal-spatial distribution of gold and antimony deposits(prospects)in southern Tibet,China[J].Acta Geologica Sinica,79(3):373-385.
Pan Guitang, Li Xingzhen, Wang Liquan, al et,2002.Preliminary division of tectonic units in the Qinghai-Tibet Plateau and its adjacent regions[J].Geological Bulletin of China,21(11):701-707.
Qi Xuexiang, Li Tianfu, Meng Xiangjin, al et,2008.Cenozoic tectonic evolution of the Tethyan Himalayan foreland fanit-fold belt in southern Tibet,and its constraint on antimony-gold polymetallic minerogenesis[J].Acta Petrologica Sinica,24(7):1638-1648.
Shi Changyi,1995.Current situation of anomaly lower limit and anomaly identification[J].Foreign Geo-exploration Technology,(3):19-25.
Shi Haipeng, Wei Junhao, Zhao Shaoqing, al et,2015.Content-area fractal characteristics and prospecting prediction for the Northern Helanshan:1∶50 000 geochemical measurement data[J].Geological Science and Technology Information,34(3):71-79.
Shi Yanxiang, Ji Hongjin, Lu Jilong, al et,2004.Factor analysis method and application of stream sediment geochemical partition[J].Geology and Prospecting,40(5):73-76.
Sun X, Zheng Y Y, Pirajno F, al et,2018.Geology,S-Pb isotopes,and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet:Implications for multiple mineralization events at Zhaxikang[J].Mineralium Deposita,53(3):435-458.
Sun Xiaoming, Wei Huixiao, Zhai Wei, al et,2010.Ore-froming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet,China[J].Acta Petrologica Sinica,26(6):1672-1684.
Tang Guodong, Luo Xianrong, Wang Dong,et al. 2020. Geochemical characteristics of soil and prospecting prediction in the Yanyi gold mining area,Muli,Sichuan Province [J]. Geology and Exploration,56(6): 1205-1218.
Wang Faming, Zhai Yulin, Li Yanjun, al et,2015.Soil geochemical anomaly information extraction and prospecting prediction in the Miegetan gold deposit,northern segment of the Dachang gold mine,Qinghai Province[J]. Geological Science and Technology Information,34(5):127-133.
Wang Yaying, Gao Li’e, Zeng Lingsen, al et,2016.Multiple phases of Cretaceous mafic magmatism in the Gyangze-Kangma area,Tethyan Himalaya,southern Tibet[J].Acta Petrologica Sinica,32(12):3572-3596.
Wu Xisheng,1993.Geochemical Data Processing Methods[M].Beijing:Geological Publishing House.
Xi Mingjie, Ma Shengming, Liu Chongmin, al et,2013.Characteristics and evaluation of soil geochemical anomalies of the Zhunsujihua Cu-Mo deposit in Inner Mongolia[J].Geology and Exploration,49(2):337-345.
Xie Yuling, Yang Kejun, Li Yingxu, al et,2019.Mazha gold-antimony deposit in southern Tibet:The characteristics of ore-forming fluids and the origin of gold and antimony[J].Earth Science,44(6):1998-2016.
Yang Xiaoxiao, Luo Xianrong, Zheng Chaojie, al et,2008.Geochemical characteristics of soil and prospecting direction in the Guoqing area,northern margin of the Hengyang basin[J].Geology and Exploration,54(4):762-771.
Yang Z S, Hou Z Q, Meng X J, al et,2009.Post-collisional Sb and Au mineralization related to the South Tibetan detachment system,Himalayan orogen[J].Ore Geology Revie-ws,36(1/2/3):194-212.
Yin A, Harrison T M,2003.Geologic evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences,28:211-280.
Zang Jinsheng, Wang Dongxiao, Zhao Ruiqiang,2014.Quantitative evaluation of geochemical anomalies[J].Geophysical and Geochemical Exploration,38(6):1114-1118.
Zha Xi, Ciren Basang, Ciren Donzhu, al et,2018.A brief analysis of the geological characteristics and metallogenic regularity of the Buzhu Sexiu area in Tibet[J].World Nonferrous Metals,(19):253-255.
Zhai Yulin, Wei Junhao, Li Yanjun, al et,2015.Geological and geochemical prospecting model of the Dachang gold deposit,Qinghai Province[J].Bulletin of geological science and technology,34(6):100-107.
Zhang Gangyang, Zheng Youye, Zhang Jianfang, al et,2011.Ore-control structural and geochronologic constrain in Sharagang antimony deposit in Southern Tibet,China[J].Acta Petrologica Sinica,27(7):2143-2149.
Zhang Shanming, Feng Gang, Zhang Jian, al et,2011.Principle and methods to search for ore bodies at depth using soil geochemistry[J].Geology and Exploration,47(6):1114-1123.
Zhang Zeming, Ding Huixia, Dong Xin, al et,2019.Two contrastin eclogite types in the Himalayan orogen and differential subduction of Indian continent[J].Earth Sciences,44(5):1602-1619.
Zheng Youye, Sun Xiang, Tian Liming, al et,2014. Mineralization,deposit type and metallogenic age of the gold antimony polymetallic belt in the Eastern part of the North Himalayan[J].Geotectonica et Metallogenia,38(1):108-118.
Zheng Youye, Zhang Lixue, Sun Xiang, al et,2012.Metallogenesis,deposit types and ore-controlling factors of Au-Sb polymetallic metallogenic belt,North Himalaya[J].Mineral Deposits,31(Supp.1):1081-1082.
代作文,2020.西藏错那洞铍锡钨多金属矿床成矿作用研究[D].成都:成都理工大学.
胡青华,肖晓林,曹圣华,等,2011.地球化学异常下限的含量—面积分形计算方法——以江西永平地区为例[J].东华理工大学学报(自然科学版),34(2):107-110.
黄文斌,罗先熔,刘攀峰,等,2020.青海省石灰沟地区水系沉积物测量地球化学特征及找矿预测[J].地质科技通报,39(3):150-159.
黄小东,2011.藏南拆离系江孜—隆子金—锑成矿带成矿规律与找矿方向研究[D].成都:成都理工大学.
兰双双,吕杜,曾攀,等,2019.西藏浪卡子县穷子地区土壤地球化学特征及找矿预测[J].地质找矿论丛,34(2):286-293.
黎彤,袁怀雨,吴胜昔,等,1999.中国大陆壳体的区域元素丰度[J].大地构造与成矿学,23(2):101-107.
李富,马东升,居维伟,等,2017.土壤地球化学测量在印尼某铜铅锌多金属矿区的应用[J].地质学刊,41(1):138-147.
李光明,张林奎,焦彦杰,等,2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J].矿床地质,36(4):1003-1008.
李国猛,姜维,石文杰,等,2020.藏南康马县布主金(锑)矿构造控矿规律及找矿预测[J].地球科学,45(6):2117-2134.
林森,陶超群,刘莉晖,2021.甘肃明舒井南金矿床土壤地球化学异常特征及找矿潜力[J].桂林理工大学学报,41(02):267-276.
刘国政,2014.土壤化探在内蒙古新右旗宝格德乌拉区找矿中的应用及效果[D].石家庄:石家庄经济学院.
刘劲松,邹先武,汤朝阳,等,2016.大巴山地区水系沉积物地球化学特征及找矿方向[J].中国地质,43(1):249-260.
刘铭,王仔章,2020.青海省都兰县丘吉东沟金矿水系沉积物地球化学特征及找矿远景[J].黄金科学技术,28(6):837-845.
聂凤军,胡朋,江思宏,等,2005.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报,79(3):373-385.
潘桂棠,李兴振,王立全,等,2002.青藏高原及邻区大地构造单元初步划分[J].地质通报,21(11):701-707.
戚学祥,李天福,孟祥金,等,2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J].岩石学报,24(7):1638-1648.
施海鹏,魏俊浩,赵少卿,等,2015.宁夏贺兰山北段1:5化探数据的含量—面积分形异常特征及找矿预测[J].地质科技通报,34(3):71-79.
时艳香,纪宏金,陆继龙,等,2004.水系沉积物地球化学分区的因子分析方法与应用[J].地质与勘探,40(5):73-76.
史长义,1995.异常下限与异常识别之现状[J].国外地质勘探技术,(3):19-25.
孙晓明,韦慧晓,翟伟,等,2010.藏南邦布大型造山型金矿成矿流体地球化学和成矿机制[J].岩石学报,26(6):1672-1684.
汤国栋,罗先熔,王东,等,2020.四川木里烟依金矿区土壤地球化学特征及找矿预测[J].地质与勘探,56(6):1205-1218.
王发明,翟玉林,李艳军,等,2015.青海大场金矿田北缘灭格滩矿区土壤地球化学异常信息提取及找矿预测[J].地质科技通报,34(5):127-133.
王亚莹,高利娥,曾令森,等,2016.藏南特提斯喜马拉雅带内江孜—康马地区白垩纪多期基性岩浆作用[J].岩石学报,32(12):3572-3596.
吴锡生,1993.化探数据处理方法[M].北京:地质出版社.
席明杰,马生明,刘崇民,等,2013.内蒙古准苏吉花铜钼矿区土壤地球化学异常特征与评价[J].地质与勘探,49(2):337-345.
谢玉玲,杨科君,李应栩,等,2019.藏南马扎拉金—锑矿床:成矿流体性质和成矿物质来源[J].地球科学,44(6):1998-2016.
杨笑笑,罗先熔,郑超杰,等,2018.衡阳盆地北缘国庆矿区土壤地球化学特征及找矿方向[J].地质与勘探,54(4):762-771.
臧金生,王东晓,赵瑞强,2014.化探异常定量评价[J].物探与化探,38(6):1114-1118.
扎西,巴桑次仁,顿珠次仁,等,2018.浅析西藏布主色秀地区矿床地质特征及成矿规律[J].世界有色金属,(19):253-255.
翟玉林,魏俊浩,李艳军,等,2015.青海大场金矿床地质地球化学找矿模型[J].地质科技通报,34(6):100-107.
张刚阳,郑有业,张建芳,等,2011.西藏沙拉岗锑矿控矿构造及成矿时代约束[J].岩石学报,27(7):2143-2149.
张善明,冯罡,张建,等,2011.运用土壤地球化学寻找深部矿体的原理及方法[J].地质与勘探,47(6):1114-1123.
张泽明,丁慧霞,董昕,等,2019.喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲[J].地球科学,44(5):1602-1619.
郑有业,孙祥,田立明,等,2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代[J].大地构造与成矿学,38(1):108-118.
郑有业,张立雪,孙祥,等,2012.北喜马拉雅金锑多金属成矿带成矿作用、矿床类型与控矿因素[J].矿床地质,31(增1):1081-1082.
[1] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[2] 俞炳,邱海成,于昌明,曾庆栋,杜琴,叶杰,李建平,陈海涛. EH4音频大地电磁方法在辽东五龙金矿控矿构造及成矿预测研究中的应用[J]. 黄金科学技术, 2021, 29(5): 637-646.
[3] 马承,宋伊圩,孙彪,王占彬. 西秦岭岷礼成矿带地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(4): 489-499.
[4] 刘铭,王仔章. 青海省都兰县丘吉东沟金矿水系沉积物地球化学特征及找矿远景[J]. 黄金科学技术, 2020, 28(6): 837-845.
[5] 秦运忠, 宋海军. 广西乐业县岩旦—岩堂金矿床找矿模型及成矿预测[J]. 黄金科学技术, 2020, 28(3): 317-327.
[6] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[7] 陈超民,冷成彪,司国辉. 基于GIS与层次分析法的综合成矿预测——以新疆库米什地区为例[J]. 黄金科学技术, 2020, 28(2): 213-227.
[8] 罗应,卢映祥,刘学龙,薛顺荣,王帅帅,李振焕,张昌振,陈建航. 滇西保山地块黑牛凹金矿区辉绿玢岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 黄金科学技术, 2020, 28(1): 1-11.
[9] 唐卫东, 马庆, 王郅睿. 青海献礼山地区1/5万水系沉积物地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(3): 289-296.
[10] 秦军强,董文超,聂怀跃,庞开元. 河南嵩县下蒿坪金矿地球化学特征及成因探讨[J]. 黄金科学技术, 2017, 25(2): 23-31.
[11] 白德胜,杨怀辉,聂建民. 河南槐树坪矿区缓倾斜金矿体特征及找矿方向[J]. 黄金科学技术, 2017, 25(1): 18-26.
[12] 刘新伟,汪超,韩璐,薛玉山,薛磊,朱磊. 王家坪金矿床地质地球化学特征及成因探讨[J]. 黄金科学技术, 2016, 24(4): 39-46.
[13] 唐小春,张善明,张治国,张华,范立新,闫辽伟. 物质场—能量场—信息场综合成矿预测——以广西大瑶山矿区为例[J]. 黄金科学技术, 2016, 24(2): 59-66.
[14] 路耀祖,杨晓刚. 青海南巴颜喀拉造山带扎开陇巴地区地质特征及金矿找矿前景[J]. 黄金科学技术, 2016, 24(1): 28-34.
[15] 刘满年,陈力子,李小江,崔龙,董风. 青海同德小曲如沟—加日亥一带地质地球化学特征及钨矿找矿潜力分析[J]. 黄金科学技术, 2016, 24(1): 46-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 沈述保,唐明刚. 含砷难处理金矿浮选研究进展[J]. 黄金科学技术, 2014, 22(2): 63 -66 .
[2] 彭剑平,沈述保. 绿色矿山建设长效机制与典型案例[J]. 黄金科学技术, 2016, 24(4): 133 -136 .
[3] 宋英昕,宋明春,丁正江,魏绪峰,徐韶辉,李杰,谭现峰,李世勇,张照录, 焦秀美,胡弘,曹佳. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4 -18 .
[4] 陈芳芳,张亦飞,薛光. 黄金冶炼污染治理与废物资源化利用[J]. J4, 2011, 19(2): 67 -73 .
[5] 王吉青,王苹,赵晓娟,林乡伟. 黄金生产尾矿综合利用的研究与应用[J]. J4, 2010, 18(5): 87 -89 .
[6] 王书春,王瑞腾,孙树提. 内蒙古柴胡栏子金矿床矿体赋存特征及深部预测[J]. J4, 2012, 20(4): 109 -112 .
[7] 王文军,肖庆飞,康怀斌,詹信顺,吴启明,肖珲. 某金矿MQG3660格子型球磨机球荷特性优化试验研究[J]. 黄金科学技术, 2016, 24(2): 90 -94 .
[8] 倪帅男,吴彩斌,叶景胜,杨杰,袁程方. 顽石作为磨矿介质在含金铜硫分离中的试验研究[J]. 黄金科学技术, 2018, 26(1): 81 -88 .
[9] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[10] 丁剑锋,何顺斌,刘大兵,于常先,马明辉. 盘区采矿法在三山岛金矿的研究与应用[J]. J4, 2011, 19(3): 63 -67 .