img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (6): 805-816.doi: 10.11872/j.issn.1005-2518.2021.06.217

• 矿产勘查与资源评价 • 上一篇    下一篇

广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义

冼源宏(),詹华思,李健唐   

  1. 中国地质调查局海口海洋地质调查中心,海南 海口 571127
  • 收稿日期:2020-12-04 修回日期:2021-04-21 出版日期:2021-12-31 发布日期:2022-03-07
  • 作者简介:冼源宏(1983-),男,海南海口人,工程师,从事地质矿产勘查工作。59204907@qq.com
  • 基金资助:
    藏南地质矿产调查评价项目“广东洽水—横石地区花岗岩类的成因及其与成矿关系”(12120114083071)

Isotope Geochemical Characteristics and Geological Significance of Skarn Type Iron Polymetallic Deposit in Huaiji Area,Guangdong Province

Yuanhong XIAN(),Huasi ZHAN,Jiantang LI   

  1. Haikou Marine Geological Survey Center,China Geological Survey,Haikou 571127,Hainan,China
  • Received:2020-12-04 Revised:2021-04-21 Online:2021-12-31 Published:2022-03-07

摘要:

怀集地区位于广东省南岭成矿带中段,成矿地质条件优越,区内已发现铁、铅、锌和银等大量矿床(点),但这些矿床与花岗岩的成因关系尚未得到深入研究。为确定该区成矿物质来源,开展了花岗岩体和典型矿床S、Pb、H和O同位素地球化学研究工作。研究结果表明:矿石δ34SCDT值为-0.12‰~6.58‰,平均值为3.23‰,峰值出现在3‰~5‰之间,呈现明显的塔式分布,由于矿石中没有硫酸盐,成矿流体中硫绝大多数为H2S,处于低氧逸度f(O2)和低pH值环境,且黄铁矿的δ34S值近似等于流体的δ34S∑S值,说明其硫源主要来自深源,少部分来自地层海相碳酸盐岩中的硫酸盐物质;绝大多数矿石Pb同位素组成与晚白垩世花岗岩钾长石Pb同位素组成相似,但矿石的207Pb/204Pb值总体略低,说明成矿物质可能主要来源于花岗岩,在成矿时有少量幔源物质的加入;将研究区与晚白垩世花岗岩有关的代表性矿床石英流体H、O同位素测试结果投到流体H、O同位素组成图解中,除将军头铁多金属矿床之外,全落入岩浆水范围,表明成矿热液主要来源于岩浆水。同位素地球化学分析结果表明:研究区与~100 Ma花岗岩有关的矽卡岩型和矽卡岩—热液脉型矿床的成矿物质主要来源于晚白垩世花岗岩。

关键词: 同位素地球化学特征, 花岗岩, 成矿物质来源, 成矿条件, 矽卡岩型多金属矿床, 怀集地区, 广东省

Abstract:

The Huaiji area belongs to the middle section of the Nanling metallogenic belt in Guangdong Province.The metallogenic geological conditions of the Huaiji area are superior.A large number of deposits(points) such as iron,lead,zinc and silver have been found in the area,but their genetic relationship with granite has not been studied in depth.In order to determine the source of minerals,S,Pb,H and O isotope geochemistry studies were carried out to explore the source of metallogenic minerals.On the basis of the background analysis of ore-forming elements,the Pb and S isotope analysis of sulfide in the ore,and the O,H,C isotope analysis of the quartz and carbonate in the altered rock and ore were carried out to trace the mineralization and the source of ore-forming fluids reveals the coupling relationship between magmatic activity and mineralization.The results show that:δ34SCDT(‰) is -0.12‰~6.58‰,the mean value is 3.23‰,the peak is in the 3‰~5‰,there is a clear tower-like distribution.Since there is no sulfate in the ore,most of the S in the ore-forming fluid is H2S,which is in a low f(O2) and low pH environment.The δ34S value of pyrite is approximately equal to the δ34S∑S value of the fluid.Therefore,its sulfur source mainly comes from deep sources,and a small part comes from sulfate materials in stratigraphic marine carbonate rocks.The Pb isotopic composition of most ores is similar to that of Late Cretaceous granite potash feldspar,but the 207Pb/204Pb value of the ores is generally slightly lower.The ore-forming material may mainly come from granite,but there is a small amount of mantle-derived material during the mineralization.The test results of the H and O isotopes of the representative quartz fluids related to the Late Cretaceous granites in the survey area are input into the fluid hydrogen and oxygen isotope composition diagram.Except for the Jiangjuntou deposit,all fall into the range of magmatic water,indicating the main source of ore-forming hydrothermal fluids in magma water.Through the study,it is further confirmed that the ore-forming materials and ore-forming fluids of the skarn type and skarn-hydrothermal vein type deposits in Huaiji area are mainly derived from the late Cretaceous granite.

Key words: isotope geochemical characteristics, granite, source of metallogenic materials, metallogenic conditions, skarn type polymetallic deposit, Huaiji area, Guangdong Province

中图分类号: 

  • P618.4

图1

怀集地区地质矿产分布图1.第四系;2.白垩系;3.侏罗系;4.三叠系;5.石炭系;6.寒武系;7.细粒多斑黑云母正长花岗岩;8.花岗斑岩;9.细粒斑状黑云母二长花岗岩;10.细粒多斑黑云母二长花岗岩;11.细粒含斑细粒黑云母二长花岗岩;12.细中粒含斑黑云母二长花岗岩;13.细中粒斑状黑云母二长花岗岩;14.细中粒斑状角闪黑云二长花岗岩;15.粗中粒斑状(角闪)黑云二长花岗岩;16.细粒少斑黑云母二长花岗岩;17.细粒含斑黑云母二长花岗岩;18.粗中粒含斑黑云母二长花岗岩;19.细粒含斑二云母碱长花岗岩;20.无烟煤;21.磁铁矿;22.铅;23.铜铅锌;24.钨;25.金;26.砂金;27.水晶;28.冰洲石;29.黄铁矿;30.白云母;31.石灰石;32.高岭土;33.萤石"

表1

怀集地区典型矿床地质特征"

矿床名称矿体形态规模成因类型成矿地质体矿石类型主要矿化和蚀变
东园磁铁矿透镜状中型矽卡岩型产于黄石脑侵入体与金鸡组砂岩接触带富磁铁矿矿石磁铁矿化、矽卡岩化、滑石化、蛇纹石化和绿泥石化
东坑磁铁矿透镜状中小型矽卡岩型产于黄石脑侵入体与金鸡组砂岩和连县组白云质灰岩的接触带富磁铁矿矿石磁铁矿化、褐铁矿化、矽卡岩化和绿泥石化
格仔塘铅锌多金属矿透镜状中型矽卡岩—热液脉型产于小云雾山组细砂岩中,大桂山岩体的外围铅锌银硫化物为主的矽卡岩型矿石方铅矿化、闪锌矿化、黄铁矿化、矽卡岩化、硅化和萤石化
横石铅锌多金属矿似层状中型矽卡岩—热液脉型产于三岗山岩体与连县组灰岩接触带铅锌铜硫化物为主的矽卡岩型矿石方铅矿化、闪锌矿化、黄铜矿化、矽卡岩化、硅化和萤石化
筱鼻磁铁辉铋矿透镜状小型矽卡岩—热液脉型产于鸡笼岭小岩体与新隆组接触带富磁铁矿矿石磁铁矿化、褐铁矿化和矽卡岩化
将军头铁多金属矿透镜状中型矽卡岩—热液脉型产于将军头岩体与高滩组砂页岩接触带铁锌钼硫化物为主的矽卡岩型矿石磁铁矿化、闪锌矿化和矽卡岩化
墩头银铅锌多金属矿脉状中小型破碎蚀变岩型产于新隆组粉砂岩蚀变带铅锌银硫化物为主的蚀变岩型矿石磁铁矿化、铅锌矿化绿泥石化、硅化和角岩化

表2

怀集地区S同位素测试结果"

矿床名称样品编号矿物名称δ34SCDT/‰
汶朗茶场铁多金属矿DP191-TW2磁黄铁矿0.35
DP191-TW5磁黄铁矿0.06
DP191-TW10黄铁矿3.59
DP191-TW10黄铁矿3.62
格仔塘铅锌多金属矿DP261-TW1磁黄铁矿4.85
DP261-TW2黄铁矿4.39
DP261-TW4黄铁矿4.17
DP261-TW6黄铁矿3.99
DP261-TW6黄铁矿4.02
DP261-TW8-a闪锌矿4.05
DP261-TW8-b方铅矿1.26
横石铅锌多金属矿D0112-TW-a方铅矿6.58
D0112-TW-b闪锌矿4.71
D0112-TW-c黄铁矿5.04
D0112-TW-4黄铁矿5.22
东坑磁铁矿D0126-TW2黄铁矿1.61
D0126-TW2黄铁矿1.49
将军头铁多金属矿DP201-TW3黄铁矿3.23
DP201-TW4黄铁矿-0.12
DP201-TW5磁黄铁矿5.09
DP201-TW12方铅矿0.73

图2

怀集地区代表性矿床硫化物δ34SCDT值分布直方图(a)横石铅锌矿;(b)东坑磁铁矿;(c)汶塘茶场铅锌矿点;(d)将军头铁多金属矿;(e)格仔塘铅锌矿;(f)调查区典型矿床汇总;Po-磁黄铁矿;Py-黄铁矿;Sp-闪锌矿;Gn-方铅矿"

表3

怀集地区花岗岩钾长石及矿床硫化物Pb同位素组成分析结果"

矿床(或花岗岩)名称样品编号样品名称Pb同位素比值
206Pb/204Pb207Pb/204Pb208Pb/204Pb
汶朗茶场铁多金属矿DP191-TW2磁黄铁矿18.72815.75139.192
DP191-TW5磁黄铁矿18.67115.75539.121
DP191-TW10黄铁矿18.68515.76939.172
将军头铁多金属矿DP201-TW3黄铁矿18.77915.78839.337
DP201-TW5磁黄铁矿18.78815.74739.234
DP201-TW12方铅矿18.40215.62338.637
格仔塘铅锌多金属矿DP261-TW1磁黄铁矿18.82715.74639.295
DP261-TW2黄铁矿18.85015.78439.440
DP261-TW4黄铁矿18.84915.79739.454
DP261-TW8-b方铅矿18.88515.79939.506
横石铅锌多金属矿D0112-TW-a方铅矿18.73515.81839.420
D0112-TW-4黄铁矿18.66915.73639.142
东坑铁矿D0126-TW-2黄铁矿18.84615.77939.341
粗中粒含斑黑云母二长花岗岩DP263-RZ3钾长石18.48815.79638.752
DP200-RZ1钾长石18.70415.85039.103
细粒含斑二云母碱长花岗岩DP266-RZ1钾长石18.56815.74338.633
细粒少斑黑云母二长花岗岩DP203-RZ1钾长石18.71715.78239.229
DP222-RZ1钾长石18.74315.82039.372
细中粒斑状角闪黑云二长花岗岩DP225-RZ1钾长石18.76615.83939.398
DP245-RZ1钾长石18.81115.80539.351
细中粒斑状黑云母二长花岗岩DP204-RZ1钾长石18.78015.84939.453
DP181-RZ2钾长石18.76115.79739.305
DP190-RZ1钾长石18.80915.83039.486
细中粒含斑黑云母二长花岗岩DP202-RZ1钾长石18.78815.81739.403
细粒含斑—细粒黑云母二长花岗岩DP171-RZ1钾长石18.73615.78539.328
细粒斑状黑云母二长花岗岩DP230-RZ6钾长石18.79615.78339.292
花岗斑岩DP250-RZ1钾长石18.80415.80839.387

图4

怀集地区晚白垩世花岗岩钾长石及相关代表性矿床硫化物Pb同位素构造模式演化图(底图据Zartman et al.,1981)1-磁黄铁矿;2-黄铁矿;3-方铅矿;4-粗中粒斑状角闪黑云二长花岗岩;5-细中粒斑状黑云二长花岗岩;6-细中粒含斑黑云二长花岗岩;7-细粒含斑—细粒黑云母花岗岩;8-细粒多斑(细中粒)黑云母二长花岗岩;9-黑云角闪多斑花斑岩;10-黑云正长花岗岩;A-地幔;B-造山带;C-上地壳;D-下地壳"

图5

怀集地区晚白垩世花岗岩钾长石及相关代表性矿床硫化物Pb同位素构造环境判别图解(底图据Zartman et al.,1981)1-磁黄铁矿;2-黄铁矿;3-方铅矿;4-粗中粒斑状角闪黑云二长花岗岩;5-细中粒斑状黑云二长花岗岩;6-细中粒含斑黑云二长花岗岩;7-细粒含斑—细粒黑云母花岗岩;8-细粒多斑(细中粒)黑云母二长花岗岩;9-黑云角闪多斑花斑岩;10-黑云正长花岗岩;OIV-洋岛火山岩;OR-造山带;UC-上地壳;LC-下地壳;A、B、C、D分别代表该区域样品相对集中区"

表4

怀集地区代表性矿床石英流体H、O同位素测试结果"

矿床名称样品编号测试对象δDV-SMOW/‰δ18OV-SMOW/‰
汶朗茶场铁多金属矿DP191-TW6石英-61.27.5
将军头铁多金属矿DP201-TW12石英-50.08.8
格仔塘铅锌多金属矿DP261-TW4石英-63.99.6
DP261-TW7石英-61.89.2
横石铅锌多金属矿D0112-TW1石英-67.68.5

图6

怀集地区代表性矿床流体H、O同位素组成1-汶塘茶场铅锌矿点;2-将军头铁多金属矿;3-格仔塘铅锌矿;4-横石铅锌矿"

表5

晚白垩世花岗岩体微量元素含量"

序列名称岩性微量元素含量/(×10-6
WSnBiMoUThPb
连阳序列细粒少斑黑云母二长花岗岩2.77~6.044.26~8.390.27~0.650.46~3.506.58~11.7029.90~37.9043.50~53.40
粗中粒斑状(角闪)黑云二长花岗岩2.23~16.54.28~6.220.15~1.610.64~3.047.78~14.4026.70~73.0035.60~45.80
细中粒斑状角闪黑云二长花岗岩2.20~5.733.58~12.400.15~0.590.26~1.387.22~17.4030.20~50.1035.90~58.30
细中粒斑状黑云母二长花岗岩1.08~5.912.27~25.300.21~2.670.57~5.7013.20~25.3044.20~63.6044.10~74.50
细中粒含斑黑云母二长花岗岩1.76~3.282.70~6.140.24~6.730.61~8.9211.00~32.7047.60~64.3036.30~81.20
三岗山序列细粒含斑—细粒黑云母二长花岗岩0.43~2.771.85~5.930.09~2.490.22~2.272.34~4.5712.13~22.1024.10~44.14
细粒多斑黑云母二长花岗岩0.48~3.631.25~1.900.11~0.170.44~0.583.08~5.5415.01~15.5623.99~40.80
锅坑花斑岩细粒斑状黑云母二长花岗岩10.40~44.7013.01~23.000.49~1.140.20~0.346.73~8.0441.50~50.5026.20~34.80
大雾山序列花岗斑岩1.02~1.961.92~2.470.04~0.110.30~2.433.55~6.9712.20~23.6020.60~24.40
细粒多斑黑云母正长花岗岩0.94~1.682.69~3.150.07~0.120.56~0.673.62~5.0811.40~18.4024.00~26.80
维氏值1.530.0113.51820
null No.9 Gold Geological Party of CAPF,2017.1∶50000 regional geological survey report(Qiashuiwei,Hengshi wei)[R].Haikou:No.9 Gold Geological Party of CAPF.
null Chen Yuchuan, Wang Denghong, Xu Zhigang, al et,2014.Outline of regional metallogeny of ore deposits associated with the Mesozoic Magmatism in South China[J].Geotectonica et Metallogenia,38(2):219-229.
null Dong R, Wang H, Li W Q, al et,2021.The geology,magnetite geochemistry,and oxygen isotopic composition of the Akesayi skarn iron deposit,Western Kunlun orogenic belt,Xinjiang,northwest China:Implications for ore genesis[J].Ore Geology Reviews,130:103854.
null Fu Jianming, Ma Liyan, Cheng Shunbo, al et,2013.Metallogenesis of W(Sn) deposits and their exploration in Nanling range,China[J]. Geological Journal of China Universities,19(2):202-212.
null Gao Jianfeng, Ling Hongfei, Shen Weizhou,2005.Geochemistry and petrogenesis of Lianyang granite composite,west Guangdong Province[J].Acta Petrologica Sinica,21(6):1645-1656.
null Hu Ruizhong, Bi Xianwu, Peng Jianwu, al et,2007.Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China[J].Mineral Deposits,26(2):139-152.
null Hu Xiaokui, Jiang Shufang,2013.Geological features and prospecting potential analysis of the Bailianlonghu iron deposit in Yangshan County[J]. Gansu Metallurgy,35(4):69-73.
null Hua Renmin, Zhang Wenlan, Chen Peirong, al et,2013.Relationship between Caledonian granites and large-scale mineralization in South China[J].Geological Journal of China Universities,19(1):1-11.
null Huang Fan, Wang Denghong, Chen Zhenyu, al et,2014.Preliminary study on metallogenic specialization of the granites related to the molybdenum deposits in the Nanling region[J].Geotectonica et Metallogenia,38(2):239-254.
null Jiang J S, Gao S B, Zheng Y Y, al et,2020.Geological,geochemical,and mineralogical constraints on the genesis of the polymetallic Pb-Zn-rich Nuocang skarn deposit,western Gangdese,Tibet[J].Minerals,10(10):839.
null Li H, Palinka? L A, Watanabe K, al et,2018.Petrogenesis of Jurassic A-type granites associated with Cu-Mo andW-Sn deposits in the central Nanling region,South China:Relation to mantle upwelling and intra-continental extension[J].Ore Geology Reviews,92:449-462.
null Li Jing, Sun Yali, He Ke, al et,2010.Improvement and application of Re-Os isotopic dating method for Molybdenite[J].Acta Petrologica Sinica,26(2):642-648.
null Liao Fake,2000.Development and utilization prospects of boron and tin mineral resources in Northwest Guangdong[J].Chinese Geology,27(2):33-34.
null Lin Xiuguang, Gu Ximing, Luo Jun,2006.The characteristics of the Qingpi copper-iron deposit in Huaiji and its prospecting direction[J].West-China Exploration Engineering,18(7):127-129.
null Mao Jingwen, Xie Guiqing, Guo Chunli, al et,2008.Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings [J].Geological Journal of China Universities,14(4):510-526.
null Mao Jingwen, Xie Guiqing, Li Xiaofeng, al et,2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J].Earth Science Frontiers,11(1):45-55.
null Ministry of Geology and Mineral Resources of the People’s Republic of China,1998. Isotopic analysis methods of geolo-gical samples:~0184.22-1997[S].Beijing:Mi-nistry of Geology and Mineral Resources of the People’s Republic of China,1998.
null Wang Denghong, Chen Zhenghui, Chen Yuchuan, al et,2010.New data of the rock-forming chronology of diagenesis and mineralization of important mineral deposits in my country[J].Acta Geology,84(7):1030-1040.
null Wang Denghong, Chen Zhenyu, Huang Fan, al et,2014.Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling region[J].Geotectonica et Metallogenia,38(2):230-238.
null Wang D H, Huang F, Wang Y, al et,2019.Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region,South China[J].Ore Geology Reviews,120:103305.
null Xie Caifu,Yuan Yongsheng,2017.Genesis of granitoids in Qiashui-Hengshi area and its relationship with mineralization[R]. Haikou:No.9 Gold Geological Party of CAPF.
null Xu R, Deng M G, Li W C, al et,2021.Origin of the giant Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit,Baoshan block,SE Tibet:Constraints from Pb-Sr isotopes,calcite C-O isotopes,trace elements and Sm-Nd dating[J].Journal of Asian Earth Sciences,205:104587.
null Zartman R E, Doe B R,1981.Plumbotectonics: The model[J].Tectonophysics,75:135-162.
null Zhang J, Liu X X, Zeng Z L, al et,2021.Age constraints on the genesis of the Changkeng tungsten deposit,Nanling region,South China[J].Ore Geology Reviews,134:104134.
null Zhang Xiaoge, Xie Caifu, Zhang Zhao, al et,2020.Zircon LA-ICP-MS U-Pb geochronology of granitoide in Qiashui area,Guangdong Province:Constraints on the~100 Ma tectonic environment of interior South China[J].Geology in China..
null Zhao Zheng, Wang Denghong, He Yu, al et,2014.Metallogenic specialization of magmatic rocks associated with the lead-zinc deposits in the Nanling region[J].Geotectonica et Metallogenia,38(2):289-300.
null Zhu D P, Li H, Algeo T J, al et,2021.The prograde-to-retrograde evolution of the Huangshaping skarn deposit (Nanling Range,South China)[J].Mineralium Deposita,56:1087-1110.
null Zhu Zuliang,2007.Geological characteristics of Fengtang copper-lead-zinc deposit and analysis of prospecting prospects around it[J]. Neijiang Technology,(8):90-91.
null 陈毓川,王登红,徐志刚,等,2014.华南区域成矿和中生代岩浆成矿规律概要[J].大地构造与成矿学,38(2):219-229.
null 付建明,马丽艳,程顺波,等,2013. 南岭地区锡(钨)矿成矿规律及找矿[J].高校地质学报,19(2):202-212.
null 高剑峰,凌洪飞,沈渭洲,2005.粤西连阳复式岩体的地球化学特征及其成因研究[J].岩石学报,21(6):1645-1656.
null 胡瑞忠,毕献武,彭建堂,等,2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J].矿床地质,26(2):139-152.
null 胡孝奎,江舒芳,2013.阳山县白莲龙虎铁矿矿床地质特征及找矿潜力分析[J].甘肃冶金,35(4):69-73.
null 华仁民,张文兰,陈培荣,等,2013.初论华南加里东花岗岩与大规模成矿作用的关系[J].高校地质学报,19(1):1-11.
null 黄凡,王登红,陈振宇,等,2014.南岭钼矿的岩浆岩成矿专属性初步研究[J].大地构造与成矿学,38(2):239-254.
null 李晶,孙亚莉,何克,等,2010.辉钼矿Re-Os同位素定年方法的改进与应用[J].岩石学报,26(2):642-648.
null 廖发科,2000.粤西北硼锡矿产资源开发利用前景[J].中国地质,27(2):33-34.
null 林秀广,顾锡明,罗君,2006.怀集青皮铜铁矿矿床特征及找矿方向[J].西部探矿工程,18(7):127-129.
null 毛景文,谢桂青,郭春丽,等,2008.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,14(4):510-526.
null 毛景文,谢桂青,李晓峰,等,2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,11(1):45-55.
null 王登红,陈振宇,黄凡,等,2014.南岭岩浆岩成矿专属性及相关问题探讨[J].大地构造与成矿学,38(2):230-238.
null 王登红,陈郑辉,陈毓川,等,2010.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,84(7):1030-1040.
null 武警黄金第九支队,2017.洽水圩、横石圩幅1∶5万区域地质调查报告[R].海口:武警黄金第九支队.
null 谢财富,袁永盛,2017.广东洽水—横石地区花岗岩类的成因及其与成矿关系报告[R].海口:武警黄金第九支队.
null 张小葛,谢财富,张昭,等,2020.广东洽水地区花岗岩体LA-ICP-MS锆石U-Pb年代学:对华南内陆~100 Ma构造环境的制约[J].中国地质,.
null 赵正,王登红,何玉,等,2014.南岭地区与铅锌矿有关岩浆岩的成矿专属性研究[J].大地构造与成矿学,38(2):289-300.
null 中华人民共和国地质矿产部,1998. 同位素地质样品分析方法:~0184.22-1997[S].北京:中华人民共和国地质矿产部.
null 朱祖良,2007.凤塘铜铅锌矿床地质特征及周边找矿前景分析[J].内江科技,(8):90-91.
[1] 胡文萱, 宋明春, 李杰, 董磊磊, 赵润芊, 张亮亮, 李健, 白天慧. 胶东金矿成矿物质来源:来自与金成矿有关地质单元金含量的约束[J]. 黄金科学技术, 2024, 32(5): 781-797.
[2] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[3] 韩珂, 杨兴科. 南秦岭镇安西部钨钼矿集区成矿物质来源研究[J]. 黄金科学技术, 2024, 32(1): 13-30.
[4] 刘风龙, 王加恩, 刘远栋, 孙大亥, 程海燕, 胡艳华, 黄雯, 王振, 潘少军. 浙江衢州九华山侵入岩年代学和地球化学特征[J]. 黄金科学技术, 2024, 32(1): 31-40.
[5] 李利, 王国光, 李海立, 肖惠良, 陈乐柱. 赣南印支期白石钨(铜)矿床成矿岩体地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(5): 736-751.
[6] 王卫华, 李凯, 黄瑞新. 热冲击对花岗岩动态断裂行为的影响研究[J]. 黄金科学技术, 2023, 31(5): 752-762.
[7] 魏生云,王建国,郭学忠,邢佳. 柴北缘夏日达乌铌钽矿区花岗岩地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(3): 408-422.
[8] 吴华浩,邵拥军,刘清泉,王智琳,张毓策,袁梓焜. 湘东北正冲金矿床成因:年代学和硫同位素制约[J]. 黄金科学技术, 2023, 31(2): 190-205.
[9] 曹振梁,刘学龙,李守奎,刘思晗,李方兰,周博文. 滇西北燕山期含矿花岗岩与全球埃达克岩地球化学特征对比[J]. 黄金科学技术, 2023, 31(1): 15-25.
[10] 谢金玲,林彬,祁婧,邓世林,何亮,张晓旭. 花岗岩型铷矿研究进展及青藏高原铷矿找矿方向[J]. 黄金科学技术, 2023, 31(1): 26-36.
[11] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[12] 范晓冬,李响,陶明,尹土兵,李夕兵. 不同热冲击过程花岗岩I型和Ⅱ型断裂特性研究[J]. 黄金科学技术, 2021, 29(6): 834-842.
[13] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[14] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[15] 李逸凡,李洪奎,韩学林,耿科,张玉波,陈国栋. 胶东夏甸金矿床成因:流体包裹体及同位素证据[J]. 黄金科学技术, 2021, 29(2): 184-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!