img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2016, Vol. 24 ›› Issue (4): 66-72.doi: 10.11872/j.issn.1005-2518.2016.04.066

• 采选技术与矿山管理 • 上一篇    下一篇

三山岛海底金矿开采充填体与顶板岩层的变形监测研究

马凤山1,郭捷1,李克蓬1,卢蓉1,张洪训2,李威2   

  1. 1.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京   100029;
    2.山东黄金矿业(莱州)有限公司三山岛金矿,山东  莱州   261442
  • 收稿日期:2016-06-10 修回日期:2016-07-20 出版日期:2016-08-28 发布日期:2016-11-17
  • 作者简介:马凤山(1964-),男,河北吴桥人,研究员,从事地质工程与地质灾害方面的研究工作。fsma@mail.iggcas.ac.cn
  • 基金资助:

    国家自然科学基金面上项目“陡倾矿体充填开采岩移规律与充填体稳定性研究”(编号:41372323)资助

Monitoring and Research for the Deformation of Mine Backfill and Roof Surrounding Rock when Exploiting Sanshandao Seabed Gold Mine

MA Fengshan1,GUO Jie1,LI Kepeng1,LU Rong1,ZHANG Hongxun2,LI Wei2   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing    100029,China;
    2.Sanshandao Gold Mine,Shandong Gold Mining (Laizhou)Co., Ltd.,Laizhou    261442,Shandong,China
  • Received:2016-06-10 Revised:2016-07-20 Online:2016-08-28 Published:2016-11-17

摘要:

三山岛金矿新立矿区是我国第一个从事海底基岩矿床开采的金属矿山,主要可采矿体均赋存于海底下部20~670 m的岩体中,矿体与海水间仅靠2~3 m厚的海底黏土隔水层隔离。为保障矿山安全生产,根据新立矿区具体的采矿地质条件,选择-200 m中段63线13#、71线17#和111线37#穿脉巷道,埋设了6个测点的埋入式智能记忆型位移计。每个穿脉巷道的测点均按2种方式布设:一种是上向倾斜钻孔穿过下盘围岩、充填体与下盘围岩的接触带和充填体,用以监测充填体与下盘岩体的相对变形;第二种是上向倾斜钻孔穿越F1主裂面下盘岩体和上盘岩体,用以监测断层上下盘岩体的相对变形。通过2013年9月至2014年12月的现场监测,获得了监测期间开采活动引起的充填体及顶板岩层的移动变形特征。监测结果表明,海底充填体和上盘围岩的变形量较小,表明三山岛金矿新立海底采场充填体和上盘围岩在监测期间保持了很好的稳定性。

关键词: 海底开采, 充填体, 顶板岩层, 变形监测, 三山岛金矿

Abstract:

Xinli deposit of Sanshandao gold mine is the first exploited hard rock mine under seawater in China,which mainly occurred in seabed rock between 20 and 670 m in depth and covered by only 2 to 3 meters thick clay aquiclude under seawater.To ensure mining safety and according to mining geological conditions,six intelligently memory displacement meters had been buried in 13#,17# and 37# transverse drifts along exploration lines of 63,71 and 111,respectively.Two buried ways were designed for the six meters.One was an updip drill threading through footwall rock into fill mass and for monitoring the relative deformation between backfill and footwall rock.Another one was an updip drill penetrating footwall rock and F1 main fracture surface into hanging wall rock and for recording the relative deformation between footwall and hanging wall rocks.And the deformation and movement characteristics of backfill and hanging wall rock have been obtained from September 2013 to December 2014.The results showed that the body of fill mass and hanging wall rock under seawater were subject to a comparatively small deformation and remained good stable during the monitoring process.

Key words: undersea mining, backfill, roof surrounding rock, deformation monitoring, Sanshandao gold mine

中图分类号: 

  • TU457

[1] Kratzsch H.Mining Subsidence Engineering[M].New York:pringer-erlag,Berlin Heidelberg ,1983.
[2] Barry N,Whittaker I,David J,et al.Subsidence Occurrence,Prediction and Control[M].Netherlands:Elsevier Science Publisher,1989.
[3] Madan M S.Mine Subsidence of Mining Engineer[M].Englewood:Society for Mining Metallurgy,1986.
[4] Helmut K.Mining subsidence engineering [M].New York:Transl ated by Fleming,Spring-verlag Berlin Heidelberg,1983.
[5] Lin S,Whittaker B N,Reddish D J.Application of asymmetrical influence functions for subsidence prediction of gently inclined seam extractions[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(5):479-490.
[6] Cui X M,Miao X X,Wang J A,et al.Improved prediction of differential subsidence caused by underground mining[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(4):615-627.
[7] Sheore P R, Loui J P,Singh K B,et al.Ground subsidence observations and a modified influence function method for complete subsidence prediction[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(5):801-818.
[8] Bell F G,Stacey T R,Genske D D.Mining subsidence and its effect on the environment:Some differing examples[J].Environmental Geology,2000,40(1/2):135-152.
[9] Swift G M,Reddish D J.Stability problems associated with an abandoned ironstone mine[J].Bulletin of Engineering Geology and the Environment,2002,61(3):227-239.
[10] 刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
[11] 煤炭科学研究总院北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1986.
[12] 何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].北京:中国矿业大学出版社,1991.
[13] 谢和平,陈至达.非线性大变形有限元分析及在预测岩层移动中的应用[J].中国矿业大学学报,1988(2):94-98.
[14] 寇新建,曾卓乔,尹德潜.自然崩落法下岩移规律研究[J].江西有色金属,1991,7(2):49-53.
[15] 汤建泉,孙晓明.覆岩组合运动规律的研究[J].山东科技大学学报(自然科学版),1995,14(4):365-370.
[16] 钱鸣高,缪协兴,许家林.岩层控制中关键层理论研究[J].煤炭学报,1996,21(3):225-230.
[17] 隋旺华.开采覆岩破坏工程地质预测的理论与实践[J].工程地质学报,1994,2(2):29-37.

[1] 刘强,李夕兵,梁伟章. 岩体质量分类的PCA-RF模型及应用[J]. 黄金科学技术, 2018, 26(1): 49-55.
[2] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73-80.
[3] 刘科伟,曾庆田,刘栋. 边坡复杂地质结构三维可视化及数值模型构建[J]. 黄金科学技术, 2016, 24(2): 83-89.
[4] 郭广军,刘明君,徐咏彬,程蔚,叶延龄,郑小礼,高海峰,赵荣欣. 山东焦家金矿床工程岩体稳定性分类研究[J]. J4, 2012, 20(4): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!