黄金科学技术 ›› 2018, Vol. 26 ›› Issue (1): 124-129.doi: 10.11872/j.issn.1005-2518.2018.01.124
• 冶炼技术与装备研发 • 上一篇
陈亚静,杨洪英*,佟琳琳,金哲男
CHEN Yajing,YANG Hongying,TONG Linlin,JIN Zhenan
摘要:
以甘肃某金矿经细菌氧化提金后产生的高砷、高铁强酸性细菌氧化液为研究对象,并选择CaO作为沉淀剂进行中和除砷实验,考察pH值、温度、搅拌速度和反应时间等对中和除砷的影响,通过单因素实验确定最佳除砷条件,并探究在模拟自然环境下各因素对砷钙渣稳定性的影响。除砷实验结果表明:在pH=4~5、搅拌速度适宜及常温下反应25 min时,除砷率可达99.99%,实现了废水净化;砷钙渣定量分析结果表明:渣中As、Fe质量分数分别为4.04%和19.79%;模拟自然环境下砷钙渣稳定性影响实验结果表明:当环境pH≤1时,砷钙渣中的砷被溶出了5 mg/L,超过工业废水排放标准。通过试验发现,选择CaO作为沉淀剂对细菌氧化液进行中和除砷,可以实现废水净化,并且当含砷渣所处环境pH≥1时可以稳定存放。
中图分类号:
[ 1 ] 田晓娟,杜德平,彭立娥,等. 金矿的细菌浸出处理研究[J].中国地质,2008,35(3): 557-563.Tian Xiaojuan,Du Deping,Peng Li’e,et al. Bacterial leaching of refractory gold ore[J].Geology in China,2008,35(3): 557-563.
[ 2 ] 周爱东,杨红晓. 金的生物冶金发展[J].有色矿冶,2005,21(3): 25-27.Zhou Aidong,Yang Hongxiao. Controlindustrial fluorine&accelerate sustainable development[J].Non-ferrous Mining and M etal lurgy,2005,21(3):27-29.
[ 3 ] 李育林. 含砷细菌氧化浸出液氢氧化钙中和脱砷试验研究[J].湿法冶金,2006,25(2): 100-102.Li Yulin. Removal of arsenic from bacteria oxidation lixivum by neutralization with calcium hydroxide[J].Hydrom etal lurgy of China,2006,25(2):100-102.
[ 4 ] Randall P M. Arsenic encapsulation using Portland cement with ferrous sulfate/lime and Terra-Bond™ technologies - Microcharacterization and leaching studies[J].Science of the Total Environment,2012,420: 300.
[ 5 ] 张硕. 难浸金矿细菌氧化—提金废水净化试验研究[D].沈阳:东北大学,2010.Zhang Shuo. Bacterial Oxidation of Refractory Gold Ore and Purification of Gold Extraction[D].Shenyang:Northeastern University,2010.
[ 6 ] 柯平超,刘志宏,刘智勇,等. 固砷矿物臭葱石组成与结构及其浸出稳定性研究现状[J].化工学报,2016,67(11): 4533-4540.Ke Pingchao,Liu Zhihong,Liu Zhiyong,et al. Research status on composition,structure,and leaching stability of an arsenic solidification mineral scorodite[J].CIESC Journal,2016,67(11):4533-4540.
[ 7 ] Dove P M,Rimstidt J D. Solubility and stability of scorodite,FeAsO4·2H2O:reply[J].American Mineralogist,1987(72):845-848.
[ 8 ] Fujita T,Taguchi R,Abumiya M,et al. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part II. Effect of temperature and air[J].Hydrometallurgy,2008,90(2/3/4): 85-91.
[ 9 ] 贾海,唐新村,刘洁,等. 高砷废水处理及含砷废渣稳定化的试验研究[J].安全与环境工程,2013,20(3): 53-57.Jia Hai,Tang Xincun,Liu Jie,et al. Experimental study on the stabilization of arsenic-containing waste residue and the treatment of high-arsenic wastewater[J].Safety and Environmental Engineering,2013,20(3):53-57.
[ 10 ] Manning B A,Fendorf S E,Bostick B,et al. Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite[J].Environmental Science & Technology,2002,36(5):976-981.
[ 11 ] Tournassat C,Charlet L,Bosbach D,et al. Arsenic(Ⅲ) oxidation by birnessite and precipitation of manganese(Ⅱ) arsenate[J].Environmental Science & Technology,2002,36(3): 493-500.
[ 12 ] 谭春梅. 砷的管理和稳定化[J].中国有色冶金,2017,46(2): 1-6.Tan Chunmei. Arsenic management and stabilization[J].China Nonferrous M etal lurgy,2017,46(2):1-6.
[ 13 ] 崔日成,杨洪英,富瑶,等. 不同含砷类型金矿的细菌氧化—氰化浸出[J].中国有色金属学报,2011,21(3): 694-699.Cui Richeng,Yang Hongying,Fu Yao,et al. Biooxidation-cyanidation leaching of gold concentrates with different arsenic types [J].The Chinese Journal of Nonferrous Metals,2011,21(3):694-699.
[ 14 ] 黄宝贵. 高含量砷(Ⅲ)与砷(Ⅴ)的萃取分离法研究[J].冶金分析,1995,15(4): 7-11.Huang Baogui. Investigation on the method of extraction-separation for high contents of As(Ⅲ) and As(Ⅴ)[J]. M etal lurgical Analysis,1995,15(4):7-11.
[ 15 ] 钟正美. 快速碘量法测定微量砷[J].铀矿冶,1986(3): 67-69.Zhong Zhengmei. Determination of trace arsenic by rapid iodometric method[J].Uranium Mining and M etal lurgy,1986(3):67-69.
[ 16 ] 杨中超,朱利军,刘锐平,等. 强酸性高浓度含砷废水处理方法与经济性评价[J].环境工程学报,2014,8(6): 2205-2210.Yang Zhongchao,Zhu Lijun,Liu Ruiping,et al. Economic evaluation on technologies for treatment of strongly-acidic wastewater with high arsenic concentrations[J].Chinese Journal of Environmental Engineering,2014,8(6):2205-2210. |
No related articles found! |
|