img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (5): 794-802.doi: 10.11872/j.issn.1005-2518.2023.05.046

• Mining Technology and Mine Management • Previous Articles     Next Articles

Automatic Recognition Model of Microseismic Signal Based on Improved DCNN Method and Its Application

Yinan YANG1(),Jianhua HU2(),Tan ZHOU1,Fengwen ZHAO1,Mufan WANG1   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, Fujian, China
  • Received:2023-03-21 Revised:2023-09-11 Online:2023-10-31 Published:2023-11-21
  • Contact: Jianhua HU E-mail:857674908@qq.com;hujh21@126.com

Abstract:

In order to accurately identify mine microseismic signals,an improved deep convolutional neural network (DCNN) method was adopted.The spatial domain image of the original image superimposed by the spectrum map obtained by Fourier transform was used as the identification object of microseismic signals.An automatic identification and classification model of microseismic signals based on an improved DCNN method was proposed. The training set,verification set and test set of the IMS microseismic monitoring signal of a lead-zinc mine were established,and the reliability of the method was verified by actual engineering data. The results show that the automatic recognition model of microseismic signals with higher precision and better generalization ability is constructed by using the eigenvalues stacked on the BGR channel of the spectrum map and the spatial domain image as the input of DCNN,which can extract the features efficiently. By evaluating the F1 value,ROC curve and AUC value,the feasibility,effectiveness,and reliability of the improved method is verified.

Key words: DCNN method, microseismic monitoring, signal identification, Fourier transform, automatic recognition model, deep mining

CLC Number: 

  • TD326

Table 1

Implementation of four models on TensorFlow platform"

网络模型数据库标准识别率/%
Le Net-5Mnist99.1
Alex Net(top-5)Image Net201280.2
Google Net(top-5)Image Net201288.9
ResNet152(top-5)Image Net201296.4

Fig.1

Treatment process of Fourier transform"

Fig.2

Sample graph of microseismic events"

Fig.3

Pretreatment process of microseismic events samples"

Fig.4

Image comparison before and after Fourier transform"

Fig.5

ResNet18 network structure model"

Fig.6

Accuracy and loss curves of training set and verification set"

Table 2

Model prediction results and real results"

测试集类型真实情况/个预测结果/个

准确率

/%

微震事件非微震事件微震事件非微震事件
正例50004574391.4
反例05004845290.4

Fig.7

ROC curve and AUC value of the model"

Fig.8

Sample graphs of microseismic signals and blasting signals"

Table 3

Microseismic signal recognition results"

信号编号输入类别输出类别识别结果
微震信号1微震信号微震信号正确
微震信号2微震信号微震信号正确
微震信号3微震信号微震信号正确
爆破信号1爆破信号非微震信号正确
爆破信号2爆破信号非微震信号正确
爆破信号3爆破信号非微震信号正确
Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines[J]. Chinese Journal of Engineering,41(4):417-426.
Dong L J, Tang Z, Li X B,et al,2020.Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform[J].Journal of Central South University,27(10):3078-3089.
Fu Xuan, Huang Linqi, Chen Jiangzhan,et al,2022.Meeting the challenge of high geothermal ground temperature environment in deep mining—Research on geothermal ground temperature simulation platform of rock true triaxial testing machine[J].Gold Science and Technology,30(1):72-84.
Gao Youwen, Zhou Benjun, Hu Xiaofei,2018.Research on image recognition of convolution neural network based on data enhancement[J].Computer Technology and Development,28(8):62-65.
Gao Zhenyu,2018.Research and Application of Image Classification Method Based on Deep Convolutional Neural Network[D].Hefei:University of Science and Technology of China.
Gentili S, Michelini A,2006.Automatic picking of P and S phases using a neural tree[J].Journal of Seismology,10(1):39-63.
Hou Wei, Huo Haiying, Guo Xiaopeng,et al,2014.Research on microseismic monitoring and control technology of dynamic pressure in deep fully-mechanized top coal caving face[J].Coal Science and Technology,42(3):36-38.
Hu J H, Zhou T, Ma S W,et al,2022.Rock mass classification prediction model using heuristic algorithms and support vector machines:A case study of Chambishi copper mine[J].Scientific Reports,12:928.doi:https://doi.org/10.1038/s41598-022-05027-y .
doi: https://doi.org/10.1038/s41598-022-05027-y
Hu Naixun, Chen Tao, Zhen Na,et al,2021.Object-oriented open pit extraction based on convolutional neural network[J].Remote Sensing Technology and Application,36(2):265-274.
Jiang Xinmeng,2017.Application and Research of Convolution Neural Network Based on Tensor Flow[D].Wuhan:Central China Normal University.
Krizhevsky A, Sutskever I, Hinton G E,2012.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,60(6):84-90.
Li Xibing, Zhou Jian, Wang Shaofeng,et al,2017.Review and practice of deep mining for solid mineral resources[J]. The Chinses Journal of Nonferrous Metals,27(6):1236-1262.
Pang J M, Chen K, Shi J P,et al,2020.Libra R-CNN:Towards ba-lanced learning for object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).California:IEEE.doi:10.1109/CVPR.2019.00091 .
doi: 10.1109/CVPR.2019.00091
Perol T, Gharbi M, Denolle M,2018.Convolutional neural network for earthquake detection and location[J].Science Advances,4(2):e1700578.
Ross Z E, Meier M A, Hauksson E,et al,2018.Generalized seismic phase detection with deep learning[J].Bulletin of the Seismological Society of America,108(5A):2894-2901.
Tian Xiao, Wang Mingjun, Zhang Xiong,et al,2022.Discrimination of earthquake and quarry blast based on multi-input convolutional neural network[J].Chinese Journal of Geophysics,65(5):1802-1812.
Wang J, Teng T L,1995.Artificial neural network-based seismic detector[J].Bulletin of the Seismological Society of America,85(1):308-319.
Wang Runpei,2020.Study on the Prediction of Deformation and Rock Pressure of Overburden Monitored by Distributed Optical Fiber Based on Machine Learning[D].Xi’an:Xi’an University of Science and Technology.
Wei Mengyi, Tan Yuyang, Mao Zhonghua,et al,2018.Automatic microseismic event detection and arrival picking based on waveform cross-correlation[J].Acta Scientiarum Naturalium Universitatis Pekinensis,54(2):361-372.
Wu Aixiang, Wang Yong, Zhang Minzhe,et al,2021.New development and prospect of key technology in underground mining of metal mines[J].Metal Mine,50(1):1-13.
Wu Xiaoyang,2008.Detection and Tracking of Moving Object in Image Sequence Based on OpenCV[D].Hangzhou:Zhejiang University.
Yang Chen,2018.Research on the Analysis of Underground Mine Microseismic Monitoring Signal [D].Wuhan:Wuhan University of Science and Technology.
Yao Kaiyi, Li Yingyu,2018.Neural-network-based seismic phase automatic pickup method [J].Electronic Design Engineering,26(22):1-5.
Yu Shibo, Yang Xiaocong, Yuan Ye,et al,2020.Research on destress effect of ground pressure control for the time-space mining sequence at depths[J].Gold Science and Technology,28(3):345-352.
Zhang Minmin, Xu Heping, Wang Xiaojie,et al,2017.Application of Google TensorFlow machine learning framework[J].Cyber Security and Data Governance,36(10):58-60.
Zhao Hongbao, Liu Rui, Gu Tao,et al,2021.Research on automatic picking method of microseismic signal P wave based on deep learning mode[J].Chinese Journal of Rock Mechanics and Engineering,40(Supp.2):3084-3097.
Zhao Y, Takano K,1999.An artificial neural network approach for broadband seismic phase picking[J].Bulletin of the Seismological Society of America,89:670-680.
Zhu Wei,2022.Research on Intelligent Identification Model of Microseismic and Blasting in Deep Mines[D].Changsha:Central South University.
蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
傅璇,黄麟淇,陈江湛,等,2022.迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J].黄金科学技术,30(1):72-84.
高友文,周本君,胡晓飞,2018.基于数据增强的卷积神经网络图像识别研究[J].计算机技术与发展,28(8):62-65.
高震宇,2018.基于深度卷积神经网络的图像分类方法研究及应用[D].合肥:中国科学技术大学.
侯玮,霍海鹰,郭晓朋,等,2014.深部综放工作面动压微震监测及控制技术研究[J].煤炭科学技术,42(3):36-38.
胡乃勋,陈涛,甄娜,等,2021.基于卷积神经网络的面向对象露天采场提取[J].遥感技术与应用,36(2):265-274.
姜新猛,2017.基于TensorFlow的卷积神经网络的应用研究[D].武汉:华中师范大学.
李夕兵,周健,王少锋,等,2017. 深部固体资源开采评述与探索[J].中国有色金属学报,27(6):1236-1262.
田宵,汪明军,张雄,等,2022.基于多输入卷积神经网络的天然地震和爆破事件识别[J].地球物理学报,65(5):1802-1812.
王润沛,2020.基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D].西安:西安科技大学.
魏梦祎,谭玉阳,毛中华,等,2018.基于波形互相关的微地震事件自动识别及初至拾取[J].北京大学学报(自然科学版),54(2):361-372.
吴爱祥,王勇,张敏哲,等,2021.金属矿山地下开采关键技术新进展与展望[J].金属矿山,50(1):1-13.
吴晓阳,2008.基于OpenCV的运动目标检测与跟踪[D].杭州:浙江大学.
杨晨,2018.地下矿山微震监测信号分析研究[D].武汉:武汉科技大学.
姚开一,李英玉,2018.基于神经网络的地震震相自动拾取方法[J].电子设计工程,26(22):1-5.
于世波,杨小聪,原野,等,2020.深部区域采矿时序的地压调控卸荷效应研究[J].黄金科学技术,28(3):345-352.
章敏敏,徐和平,王晓洁,等,2017.谷歌TensorFlow机器学习框架及应用[J].网络安全与数据治理,36(10):58-60.
赵洪宝,刘瑞,顾涛,等,2021.基于深度学习模式的微震信号P波自动拾取方法研究[J].岩石力学与工程学报,40(增2):3084-3097.
朱玮,2022.深部矿山微震与爆破智能辨识模型研究[D].长沙:中南大学.
[1] Jun ZHANG, Qingping YANG, Fangfang LIU, Jinzhong ZHANG, Gangqiang XU, Xiaosong LI. Design and Research of Distributed Microseismic Monitoring System in Deep Well Large-scale Mining Mine [J]. Gold Science and Technology, 2023, 31(4): 659-668.
[2] Duiming GUO,Guoqing LI,Jie HOU,Nailian HU. Optimization of Local Ventilation Parameters of Deep Mine Excavation Roadway Based on FLUENT [J]. Gold Science and Technology, 2022, 30(5): 753-763.
[3] Liqiang CHEN,Guoyan ZHAO,Yang LI,Wenjie MAO,Chengkai DANG,Boyang FANG. Deep Roadway Support and Its Effect Evaluation Under Excavation Unloading Disturbance [J]. Gold Science and Technology, 2022, 30(3): 438-448.
[4] Xuan FU,Linqi HUANG,Jiangzhan CHEN,Yangchun WU,Xibing LI. Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine [J]. Gold Science and Technology, 2022, 30(1): 72-84.
[5] Yu TANG,Shaofeng WANG. Analysis on Rock Breakage Characteristic and Its Influence Factors of Conical Pick Under Uniaxial Confining Stress [J]. Gold Science and Technology, 2021, 29(5): 669-679.
[6] Yue JING,Shaofeng WANG,Jintao LU. Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion [J]. Gold Science and Technology, 2021, 29(4): 525-534.
[7] Chunde MA, Zelin LIU, Weibin XIE, Xin’ao WEI, Xinhao ZHAO, Shan LONG. Comparative Study of Stress Relief Method and Acoustic Emission Method in In-situ Stress Measurement in Deep Area of Xincheng Gold Mine [J]. Gold Science and Technology, 2020, 28(3): 401-410.
[8] Mingzhi DANG,Jun ZHANG,Mingtao JIA. Application and Research of Microseismic Monitoring Technology and Disaster Early Warning Methods in Huangtupo Copper and Zinc Mine [J]. Gold Science and Technology, 2020, 28(2): 246-254.
[9] He WANG,He CHEN,Hui CAO. Research Status and Trends of Large Deformation Rock Bolts in China [J]. Gold Science and Technology, 2020, 28(1): 112-123.
[10] Yu CUI,Xibing LI,Longjun DONG,Lü BAI. Optimization of Micro-seismic Monitoring Network Layout in Linglong Gold Mine [J]. Gold Science and Technology, 2019, 27(3): 417-424.
[11] Chun WANG,Cheng WANG,Zuqiang XIONG,Luping CHENG,Huaibin WANG. Deformation Characteristics of the Surrounding Rock in Deep Mining Roadway Under Dynamic Disturbance [J]. Gold Science and Technology, 2019, 27(2): 232-240.
[12] Shixing YANG,Yuhua FU,Fei ZHAN. Study on Post Peak Damage Evolution of Tailings Filling Body by Confining Pressure and Slurry Concentration [J]. Gold Science and Technology, 2019, 27(1): 97-104.
[13] Chong CHEN,Xibing LI,Fan FENG. Numerical Study on Damage Zones of the Induced Roadway Surrounding Rock [J]. Gold Science and Technology, 2018, 26(6): 771-779.
[14] LU Furan, CHEN Jianhong. Rockburst Prediction Method Based on AHP and Entropy Weight TOPSIS Model [J]. Gold Science and Technology, 2018, 26(3): 365-371.
[15] LIU Xiaoming,ZHAO Junjie,PENG Ping’an,BI Lin,DAI Bibo. Research on Automatic Recognizing of the Effective Microseismic Signals [J]. Gold Science and Technology, 2017, 25(3): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!