img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (2): 282-290.doi: 10.11872/j.issn.1005-2518.2022.02.078

• 采选技术与矿山管理 • 上一篇    下一篇

基于博弈论的主客观组合权重TOPSIS采矿方法优选

邓龙鑫(),陈建宏()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-06-20 修回日期:2021-09-22 出版日期:2022-04-30 发布日期:2022-06-17
  • 通讯作者: 陈建宏 E-mail:841416210@qq.com;cjh@263.net
  • 作者简介:邓龙鑫(1997-),男,江西赣州人,硕士研究生,从事矿业经济和采矿系统工程研究工作。841416210@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目“基于人工智能的矿山技术经济指标动态优化”(51404305)

Optimization of Mining Method with Subjective and Objective Combination Weight TOPSIS Based on Game Theory

Longxin DENG(),Jianhong CHEN()   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-06-20 Revised:2021-09-22 Online:2022-04-30 Published:2022-06-17
  • Contact: Jianhong CHEN E-mail:841416210@qq.com;cjh@263.net

摘要:

针对当前采矿方法优选过程中,权重计算时主观权重信息丢失较多且占比过大的问题,将主客观权重相结合,计算出综合权重,并运用于采矿方法优选体系。首先,利用模糊扩展层次分析法(FEAHP)计算主观权重,最大程度地保存主观信息;然后,利用CRITIC客观赋权法计算客观权重,并运用博弈论原理将主客观权重相结合,得到综合权重;最后,结合逼近理想解的排序方法(TOPSIS),建立基于博弈论的主客观组合权重TOPSIS采矿方法优选模型。将所建立的基于博弈论的主客观组合权重TOPSIS采矿方法优选模型运用于工程实例中,对姑山露天铁矿驻留矿体的采矿方法进行优选,计算出4种备选方案(上向进路胶结充填法、浅孔留矿嗣后充填法、上向水平分层充填法和下向水平分层充填法)的相对贴近度分别为0.4547、0.4441、0.5872和0.4072,得出上向水平分层充填法为最优方案。研究结果与矿山工程实例相符,证明基于博弈论组合的主客观权重值比以往单一的赋权法得到的权重值更加合理,建立的模型更科学。

关键词: 模糊扩展层次分析法, CRITIC, 博弈论, 组合权重, TOPSIS, 相对贴近度, 采矿方法优选

Abstract:

In the current optimization of mining methods, subjective components lead to more information loss, and the relative importance of evaluation indicators is unreasonable.This paper fully considered the results of the combination of comprehensive degree analysis method and fuzzy analytic hierarchy process-fuzzy extended analytic hierarchy process (FEAHP) and objective weight method CRITIC,used FEAHP to determine the subjective weight of each index in the optimization system of mining method.CRITIC algorithm was used to calculate the conflict between various indicators,so as to calculate the objective weight.Then,the principles of game theory was used to compromise the subjective and objective weights,and find their consistency to obtain a reasonable combination weight.Finally,combined with the real data of the alternatives,the distance between the four alternatives and the positive and negative ideal solutions is obtained by the distance measurement method in TOPSIS,and the relative patching progress of the four alternatives was calculated.The options of the upward approach cement filling method (Scheme 1), the shallow hole retention and subsequent filling method (Scheme 2), the upward horizontal layered filling method (Scheme 3) and the downward horizontal layered filling method (Scheme 4).The relative patching progress of the four alternatives are 0.4547,0.4441,0.5872,0.4072 respectively.It is concluded that the third scheme (upward horizontal stratified filling method) is the best,and the relative paste progress of 0.5872 also fully demonstrates that the upward horizontal stratified filling method has formed a strong contrast with the other three schemes,showing that the scheme meets the requirements of modern mining engineering for safety,low cost,and high profit,highlights its own advantages,and is consistent with mine examples and other experts’ research, indicating that the model is scientific and effective for mining optimization.

Key words: fuzzy extended analytic hierarchy process, CRITIC method, game theory, combination weights, TOPSIS, relative paste progress, mining method optimizations

中图分类号: 

  • TD802

表1

语言变量及其对应的三角模糊数"

语言变量三角模糊标度三角模糊互反标度
完全相同(JE)(1,1,1)(1,1,1)
同等重要(EI)(1/2,1,3/2)(2/3,1,2)
稍微重要(WMI)(1,3/2,2)(1/2,2/3,1)
明显重要(SMI)(3/2,2,5/2)(2/5,1/2,2/3)
非常重要(VSMI)(2,5/2,3)(1/3,2/5,1/2)
极端重要(AMI)(5/2,3,7/2)(2/7,1/3,2/5)

表2

平均随机一致性指标取值"

判断矩阵阶数RI判断矩阵阶数RI
1061.24
2071.32
30.5881.41
40.991.4
51.12

图1

M1和M2之间的交集(Zhu et al.,1999)"

图2

采矿方法优选评价体系框架图"

表3

采矿方法优选综合评判指标体系(王新民等,2013; 陈毅等,2017)"

评判指标C1C2C3C4
经济指标(P1采充总成本(X1) / (元·t-186.258.571.666.9
矿石回收率(X2 / %84838783
矿石贫化率(X3 / %710512
技术指标(P2采切比(X4) / (m3 ·k-1·t-136.1064.6057.5043.65
方案灵活适应性(X50.750.550.850.55
实施困难程度(X60.850.550.850.65
采场生产能力(X7) / (t·d-1144.3198.6201.8232
安全指标(P3采空区最大暴露面积(X8) / m2470822.4390470
通风条件(X90.850.750.850.75
爆破对边坡稳定性影响程度(X100.550.850.650.85

表4

O-P层模糊比较判断矩阵"

评判指标经济指标(P1技术指标(P2安全指标(P3
经济指标(P1(1,1,1)(1/2,1,3/2)(3/2,2,5/2)
技术指标(P2(2/3,1,2)(1,1,1)(1,3/2,2)
安全指标(P3(2/5,1/2,2/3)(1/2,2/3,1)(1,1,1)

表5

O-P层清晰矩阵"

评判指标经济指标(P1技术指标(P2安全指标(P3
经济指标(P11.0001.0002.000
技术指标(P21.1111.0001.500
安全指标(P30.5110.6941.000

表6

P1-X层模糊比较判断矩阵"

评判指标X1X2X3
X1(1,1,1)(1/2,1,3/2)(1,3/2,2)
X2(2/3,1,2)(1,1,1)(1,3/2,2)
X3(1/2,2/3,1)(1/2,2/3,1)(1,1,1)

表7

P2-X层模糊比较判断矩阵"

评判指标X4X5X6X7
X4(1,1,1)(1/2,1,3/2)(1,3/2,2)(1,3/2,2)
X5(2/3,1,2)(1,1,1)(1,3/2,2)(1,3/2,2)
X6(1/2,2/3,1)(1/2,2/3,1)(1,1,1)(1/2,1,3/2)
X7(1/2,2/3,1)(1/2,2/3,1)(2/3,1,2)(1,1,1)

表8

P3-X层模糊比较判断矩阵"

评判指标X8X9X10
X8(1,1,1)(1/2,1,3/2)(3/2,2,5/2)
X9(2/3,1,2)(1,1,1)(1,3/2,2)
X10(2/5,1/2,2/3)(1/2,2/3,1)(1,1,1)

表9

4种方案的相对贴近度"

方案di+di-Ei+排序
方案10.70400.58720.45472
方案20.75560.60380.44413
方案30.52690.74960.58721
方案40.75810.52070.40724
Chamoli S,2015. Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle roughened rectangular channel[J].Energy,84:432-442.
Chen Boyu, Song Weidong, Jiang Guojian,et al,2015.Optimization of mining methods in Dayingezhuang gold mine based on AHP-CTODIM evaluation model[J].Gold,(10): 35-39.
Chen Jianhong, Liu Lang, Zhou Zhiyong,et al,2010.Optimization of mining methods based on principal component analysis and neural network[J].Journal of Central South University(Natural Science Edition),41(5):1967-1972.
Chen Yi, Chen Jianhong,2017.Optimization of mining methods based on game theory and relative entropy TOPSIS[J].Gold Science and Technology,25(6):75-82.
Deng Jian,2015.Multi-attribute Decision-making Method Ba-sed on Improved VIKOR Method and Its Application in Water Conservancy Projects[D].Tianjin:Tianjin University.
Ganesh A H, Shobana A H, Ramesh R,2021.Identification of critical path for the analysis of bituminous road transport network using integrated FAHP-FTOPSIS method[J].Materialstoday:Proceedings,37(2):193-206.
Hu Wei, Wang Weiping, Lou Guangwen,2016.Application of grey analytic hierarchy process in optimizing mining methods of Zhaoanzhuang iron mine[J].Modern Mining,(1):6-7,16.
Khashei-Siuki A, Keshavarz A, Sharifan H,2020.Comparison of AHP and FAHP methods in determining suitable areas for drinking water harvesting in Birjand aquifer.Iran[J].Groundwater for Sustainable Development,100328.
Kilincci O, Onal S A,2011.Fuzzy AHP approach for supplier selection in a washing machine company[J].Expert Systems with Applications,38(8):9656-9664.
Kwong C K, Bai H,2003.Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approch[J].IIE Transactions,35(7):619-626.
Liu Wenqing, Wang Yingming,2017.Intuitionistic fuzzy TOPSIS multi-attribute decision-making method based on rough set[J].Computer Systems Applications,26(11):277-281.
Liu Xiaoyue, Yang Wei, Zhang Xuemei,2021.Multidimensional cloud model rockburst prediction based on improved hierarchy method and CRITIC method[J].Journal of Hunan University(Natural Science Edition),48(2):118-124.
Luo Jia, Shi Xiuzhi, Zhang Shu,et al,2013.Optimization of trolley tunneling cutting scheme based on AHP and improved TOPSIS method[J].Blasting,30(4):54-59.
Seren B, Haruna Y,2017.Integrating FAHP and TOPSIS to evaluate mobile learning applications for mathematics[J].Procedia Computer Science,120:91-98.
Thapar S S, Sarangal H,2020.Quantifying reusability of software components using hybrid fuzzy analytical hierarchy process (FAHP)-Metrics approach [J]. Applied Soft Computing,88(7):105997.
Wang Xinmin, Ke Yuxian, Zhang Qinli,et al,2012.Optimal selection of open-pit to underground mining based on AHP-TOPSIS[J].Journal of Guangxi University(Natural Science Edition),37(6):1273-1279.
Wang Xinmin, Qin Jianchun, Zhang Qinli,et al,2013.Optimization of Gushan resident mine mining method based on AHP-TOPSIS evaluation model[J].Journal of Central So-uth University(Natural Science Edition),44(3):1131-1137.
Wang Xinmin, Zhao Bin, Zhang Qinli,2008.Selection of mining methods based on analytic hierarchy process and fuzzy mathematics[J].Journal of Central South University(Natural Science Edition),39(5):875-880.
Yang Rihui, Wang Shouxu,2006.Fuzzy comprehensive evaluation of environmental impact in post-evaluation of highway network based on new AHP method[J].Journal of Chong-qing Jiaotong University,25(2):93-95.
Zhang Qinli, Zhao Yufei, Rong Shuai,et al,2019.Optimization of gently inclined thin vein mining method based on variable weight theory and TOPSIS[J].Gold Science and Technology,27(6):844-850.
Zhu K J, Chang D Y,1999.A discussion on extent analysis method and applications of fuzzy AHP[J].European Journal of Operational Research,116:450-456.
陈博宇,宋卫东,江国建,2015.基于 AHP-CTODIM评判模型的大尹格庄金矿采矿方法优选[J].黄金,(10):35-39.
陈建宏,刘浪,周智勇,2010.基于主成分分析与神经网络的采矿方法优选[J].中南大学学报(自然科学版),41(5):1967-1972.
陈毅,陈建宏,2017.基于博弈论与相对熵TOPSIS的采矿方法优选[J].黄金科学技术,25(6):75-82.
邓剑,2015.基于改进VIKOR法的多属性决策方法及其在水利工程中的应用[D].天津:天津大学.
胡崴,汪为平,娄广文,2016.灰色层次分析法在赵案庄铁矿采矿方法优选中的应用[J].现代矿业,(1):6-7,16.
刘文清,王应明,2017.基于粗糙集的直觉模糊TOPSIS多属性决策方法[J].计算机系统应用,26(11):277-281.
刘晓悦,杨伟,张雪梅,2021.基于改进层次法与CRITIC法的多维云模型岩爆预测[J].湖南大学学报(自然科学版),48(2):118-124.
罗佳,史秀志,张舒,2013.基于AHP和改进TOPSIS法的台车掘进掏槽方案优选[J].爆破,30(4):54-59.
王新民,柯愈贤,张钦礼,2012.基于AHP-TOPSIS的露天转地下采矿方案优选[J].广西大学学报(自然科学版),37(6):1273-1279.
王新民,秦健春,张钦礼,等,2013.基于AHP- TOPSIS 评判模型的姑山驻留矿采矿方法优选[J].中南大学学报(自然科学版),44(3):1131-1137.
王新民,赵彬,张钦礼,2008.基于层次分析和模糊数学的采矿方法选择[J].中南大学学报(自然科学版),39(5):875-880.
杨日辉,王首绪,2006.基于新AHP法的公路路网后评价中环境影响的模糊综合评价[J].重庆交通学院学报,25(2):93-95.
张钦礼,赵宇飞,荣帅,2019.基于变权重理论和TOPSIS的缓倾斜薄矿脉采矿方法优选[J].黄金科学技术,27(6):844-850.
[1] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[2] 廖宝泉,柯愈贤,卿琛,张华熙,黄豪琪,方立发,王成,陶铁军. 基于相对差异函数的金属矿采空区危险性识别[J]. 黄金科学技术, 2021, 29(3): 440-448.
[3] 赵国彦,邱菊,赵源,裴佃飞,李洋,吴攀. 金属矿绿色开采评价方法探讨[J]. 黄金科学技术, 2020, 28(2): 169-175.
[4] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[5] 刘亦晴,梁雁茹,刘娜娜,胡欢. 基于高质量发展视角的绿色矿山建设评价指标体系研究[J]. 黄金科学技术, 2020, 28(2): 176-187.
[6] 邓红卫,张维友,虞松涛,高宇旭. 基于变权联系云的采空区稳定性二维评价模型[J]. 黄金科学技术, 2020, 28(1): 32-41.
[7] 张钦礼,赵宇飞,荣帅,康虔. 基于变权重理论和TOPSIS的缓倾斜薄矿脉采矿方法优选[J]. 黄金科学技术, 2019, 27(6): 844-850.
[8] 黄仁东,刘赞赞,闫泽正. 基于有限云模型的深基坑安全性研究[J]. 黄金科学技术, 2019, 27(1): 72-79.
[9] 李欢,明俊桦,石晓凤. 基于博弈论和模糊综合评判的锌冶炼企业清洁生产评价[J]. 黄金科学技术, 2018, 26(5): 635-646.
[10] 王卫华, 戴怡文, 李坤, 唐修, 刘田. 基于Fuzzy-AHP的采矿方法优选辅助系统开发与应用[J]. 黄金科学技术, 2018, 26(3): 312-317.
[11] 陈毅,陈建宏*. 基于博弈论与相对熵TOPSIS的采矿方法优选[J]. 黄金科学技术, 2017, 25(6): 75-82.
[12] 王新民,荣帅,赵茂阳,张钦礼. 基于变权重理论和TOPSIS的尾砂浓密装置优选[J]. 黄金科学技术, 2017, 25(3): 77-83.
[13] 陈建宏,覃曹原,邓东升 . 基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J]. 黄金科学技术, 2017, 25(1): 55-60.
[14] 王久玲,李国清,胡乃联,陈博宇. 基于熵权—CTODIM模型的“三下”矿体采矿方法优选[J]. 黄金科学技术, 2016, 24(4): 81-86.
[15] 袁晓,王李管*,刘晓明,彭平安. 基于改进未确知测度理论的矿床开采方式优选[J]. 黄金科学技术, 2015, 23(5): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!