img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (2): 291-301.doi: 10.11872/j.issn.1005-2518.2022.02.138

• 采选技术与矿山管理 • 上一篇    下一篇

微波辐照再生活性炭试验研究

郄博洋1,2,3(),李沛1,2,3,苗腾飞4,白杨4,汤家焰1,2,3,曹钊1,2,3()   

  1. 1.内蒙古科技大学矿业与煤炭学院,内蒙古 包头 014010
    2.内蒙古科技大学内蒙古自治区矿业工程重点实验室,内蒙古 包头 014010
    3.白云鄂博共伴生矿资源高效综合利用省部共建协同创新中心,内蒙古 包头 014010
    4.内蒙古太平矿业有限公司,内蒙古 巴彦淖尔 015301
  • 收稿日期:2021-09-28 修回日期:2021-10-25 出版日期:2022-04-30 发布日期:2022-06-17
  • 通讯作者: 曹钊 E-mail:847573059@qq.com;caozhao1217@163.com
  • 作者简介:郄博洋(1998-),男,河北保定人,硕士研究生,从事活性炭再生研究工作。847573059@qq.com
  • 基金资助:
    国家自然科学基金项目“稀土矿浮选中Ca、Ba脉石矿物的复合抑制剂及其作用机理研究”(51764045);内蒙古科技计划项目“含碳铅锌多金属矿稀贵金属综合回收新工艺研究”(KJJH-201901);包头稀土高新区科技局“科技创新服务载体项目”(20191213);内蒙古科技大学创新基金项目(2019QDL-B30)

Experimental Study on Regeneration of Activated Carbon by Microwave Irradiation

Boyang QIE1,2,3(),Pei LI1,2,3,Tengfei MIAO4,Yang BAI4,Jiayan TANG1,2,3,Zhao CAO1,2,3()   

  1. 1.School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
    2.Inner Mongolia Key Laboratory of Mining Engineering, Baotou 014010, Inner Mongolia, China
    3.Collaborative Innovation Center of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
    4.Inner Mongolia Pacific Mining Co. , Ltd. , Bayannaoer 015301, Inner Mongolia, China
  • Received:2021-09-28 Revised:2021-10-25 Online:2022-04-30 Published:2022-06-17
  • Contact: Zhao CAO E-mail:847573059@qq.com;caozhao1217@163.com

摘要:

针对载金用活性炭热再生能耗高、耗时长、炭损高和活化程度低等问题,基于炭材料良好的吸波性,开展微波辐照再生活性炭的试验研究。单因素试验表明活化效果与再生温度呈正相关,再生温度以650~750 ℃为宜;贫炭水份以30%左右为佳,过高或过低均会降低活化效果,可能与介电能力相关;多次辐照作业只有在高温时(≥700℃)有明显作用。相比热再生技术,达到同等活化程度时,新技术节能30%~50%,且炭损更少。在700 ℃、30%水份条件下微波再生炭碘值接近新炭。在之后的酸洗作业中,微波再生炭更易被清理,元素和物相分析表明炭中的CaO等无机污染物被大量去除。BET测试和SEM表征显示微波再生炭的比表面积和总孔容比热再生炭更高、孔道更粗,支持了上述结论。

关键词: 活性炭, 微波辐照, 活化再生, 黄金选矿, 节能降耗, 微波放电

Abstract:

Activated Carbon (AC) is widely used as adsorbent in the process of gold extraction.In the cycle of gold leaching-adsorption-desorption,the AC needs to be activated regularly for reuse,which mainly depends on thermal regeneration,that is,the whole rotary kiln is heated and then AC are heated from outside to inside by heat conduction,where the pollutants are volatilized or decomposed,cleaning the carbon surface and dredging the pores.The thermal regeneration method still has the shortcomings of high energy consumption,large carbon loss and long operation time.The evaporation of pore water takes prolonged time and absorb extensive heat,restricting the improvement of efficiency and effect,which is difficult to be solved.Considering that AC is a good wave-absorbing material,it can be heated directly from the inside to the outside by microwave irradiation,which can greatly improve the energy efficiency.The technique of AC regeneration with 2.45 GHz microwave was studied by experiments where iodine value,specific energy and carbon loss were investigated.The results show that high temperature improves activation efficiency significantly and 650~750 ℃ is recommended;The moisture of AC was optimum at 30%,which might be related to dielectric variation;Execution times could only play a role at high temperature (≥700 ℃).Compared with thermal regeneration,the technique saved 30%~50% energy to achieve equal activation with a lower carbon loss.At 700 ℃ temperature,30% moisture,the regenerated carbon and fresh carbon have approximate iodine value.In the regenerated carbon processed by the technique is feasible to pickling operation that inorganic pollutants (e.g.calcium oxide) are cleaned up effectively.Moreover,BET and SEM detections also supporte the above results at a micro level,i.e.the specific surface area and total pore volume of the carbon is higher than the ones processed by thermal regeneration.

Key words: activated carbon, microwave irradiation, activation and regeneration, gold processing, energy saving, microwave discharge

中图分类号: 

  • TD953

图1

微波加热机理示意图"

图2

试验平台装置示意图1.微波装置主体;2.精密电度计;3.铠装高精度热电偶;4.测温显示器;5.粉碎机;6.烘箱;7.数显表;8.马弗炉"

图3

再生炭碘值与比能量随再生温度变化1.再生温度—碘值(微波);2.再生温度—碘值(马弗炉);3.再生温度—比能量(微波);4.再生温度—比能量(马弗炉)"

图4

再生炭碘值与比能量随样品水份变化1.入料水份—碘值(微波);2.入料水份—碘值(马弗炉);3.入料水份—比能量(微波);4.入料水份—比能量(马弗炉)"

图5

再生炭碘值与比能量随作业次数的变化1.500 ℃ 比能量;2.600 ℃ 比能量;3.700 ℃ 比能量;4.500 ℃ 碘值;5.600 ℃ 碘值;6.700 ℃ 碘值"

表1

微波设备条件"

i用途输出功率/kW能效等级Ai下限/%Ai上限/%再生水平
0家庭(本试验用)<125959接近新炭
1工业1~526065-
2工业5~1526368-
3工业1~5165--
4工业5~15168--

表2

其他设备条件表"

i用途再生水平Ci/(kWh·t-1
5工业(连续式直接通电再生)接近新炭1 770
6工业(流化床热再生)接近新炭3 870

图6

不同设备条件下微波再生比能耗与现行设备比能耗注:0~6设备再生条件下,再生到接近新炭水平所需比能耗"

图7

各类活性炭的比表面积、总孔容和孔容分布"

图8

不同水份下微波再生炭的比表面积、总孔容与孔容分布"

图9

多次作业下微波再生炭的比表面积、总孔容和孔容分布"

图10

贫炭和不同工艺再生炭电镜图1.贫炭;2.现场热再生;3.马弗炉热再生;4.微波再生"

图11

各类活性炭的XRD图谱1.新炭;2.贫炭;3.微波再生炭;4.马弗炉热再生炭;5.微波再生—酸洗炭;6.马弗炉热再生—酸洗炭;7.碳特征峰;8.CaCO3特征峰;9.Ca(OH)2特征峰"

图12

活性炭化学分析1.MgO;2.CaO;3.Na2O;4.Ni"

Bradshaw S M, Wyk E J V, Swardt J B D,1998.Microwave heating principles and the application to the regeneration of granular activated carbon[J].Journal- South African Institute of Mining and Metallurgy,98(4):201-210.
China National Institute of Standardization,2017. Minimum allowable values of energy efficiency and energy efficiency grades for household and similar microwave ovens: [S].Beijing:General Administration of Quality Supervision.
Dawson E A, Parkes G M B, Barnes P A,et al,2008.The generation of microwave-induced plasma in granular active carbons under fluidised bed conditions [J].Carbon,46(2):220-228.
Ellison W J, Lamkaouchi K, Moreau J M,1996.Water:A dielectric reference[J].Journal of Molecular Liquids,68(2/3):171-279.
Gaglianoa E, Falciglia P P, Zaker Y,2021.Microwave regeneration of granular activated carbon saturated with PFAS[J].Water Research,198:117121..
Huo Huanru, Xu Pucha,2015.Comparative study on gold extraction performance of coal activated carbon and coconut shell activated carbon[C]//Carbon Materials Branch of China Metal Society.Proceedings of the 29th Academic Exchange Conference of Carbon Materials Branch of Chinese Metal Society.Shizuishan:China Metal Society.
Hussain Z, Khan K M, Hussain K,2010.Microwave-metal interaction pyrolysis of polystyrene[J].Journal of Analytical and Applied Pyrolysis,89(1):39-43.
Jiang Honglong, Wang Zhiwei, Sun Qiang,2020.Research progress of waste activated carbon regeneration technology[J].Journal of Green Science and Technology,(22):136-138,140.
Li Ting, Wang Yilin, Zhang Xiaofei,et al,2013.Analysis on the development status of activated carbon regeneration technology[C]//Chinese Society for Environmental Sciences.Proceedings of the 2013 Annual Meeting of the Chinese Environmental Science Society (Volume 8).Kunming:China Environmental Science Society.
Liu Xiaozhu, Du Jiashan, Bao Yunqi,2012.Practices of technological reform in the gold cyanidation plant[J].Mining and Metallurgical Engineering,32(1):81-83.
Liu Yanchao, Liu Haiyu, Qiao Xiaolei,et al,2019.Microstructures and dielectric properties of activated carbons[J].Carbon Techniques,38(3):15-19.
Ma Y, Zhang X, Wen J,2021.Study on the harm of waste activated carbon and novel regeneration technology of it[J].IOP Conference Series:Earth and Environmental Science,769 (2):022047.
Mei Zhifu,2016.Renovation and application of activated carbon regeneration after gold extraction[J].Gold,37(5):51-54.
Menéndez J A, Arenillas A, Fidalgo B,et al,2010.Microwave heating processes involving carbon materials[J].Fuel Processing Technology,91(1):1-8.
Menéndez J A, Juárez-Pérez E J, Ruisánchez E,et al,2011.Ball lightning plasma and plasma arc formation during the microwave heating of carbons[J].Carbon,49(1):346-349.
Mingos D, Baghurst D R,1991.Applications of microwave dielectric heating effects to synthetic problems in chemistry [J].Chemical Society Reviews,20(1):1-47.
Negi P, Chhantyal A K, Dixit A K,et al,2021.Activated carbon derived from mango leaves as an enhanced microwave absorbing material[J].Sustainable Materials and Technologies,27..
Peng Z W, Hwang J Y,2015.Microwave-assisted metallurgy [J].International Materials Reviews,60(1):30-63.
Pu Yanxin,HanYing, Yang Hujun,et al,2021.Experimental study on regeneration of powder activated carbon by microwave radiation[J].Anhui Chemical Industry,47(3):55-57.
Sakemi D, Serpone N, Horikoshi S,2021.Search for the microwave nonthermal effect in microwave chemistry:Synthesis of the heptyl butanoate ester with microwave selective heating of a sulfonated activated carbon catalyst[J].Catalysts,11(4):466..
Shivanshu G, Avesh G, Bhusan B H,et al,2021.Studies on dielectric and magnetic properties of barium hexaferrite and bio-waste derived activated carbon composites for X-band microwave absorption[J].Journal of Alloys and Compounds,875.
Sun Kang, Jiang Jianchun,2008.Research progress of technologies and equipments for regeneration activated carbon[J].Biomass Chemical Engineering,42(60):55-60.
Tan Suxia, Wang Tonghua, Tan Ruidian,et al,2006.Application of microwave heating in porous carbon treatlng[J].Carbon Techniques,25(4):35-39.
Wang W L, Wang B, Sun J,et al,2016.Numerical simulation of hot-spot effects in microwave heating due to the existence of strong microwave-absorbing media[J].Rsc Advances,6 (58):52974-52981.
Wang Shuo,2017.Experimental study on gold leaching process of a gold mine in Gansu Province[J].Gold Science and Technology,25(4):122-127.
Weng Yuansheng,2004.Research on regeneration and new technology of activated carbon[J].Water & Wastewater Engineering,30(1):86-91.
Xiao Jingfei,2009.Process and practice of CIP disposing the original ore of Hetai gold deposit[J].Gold Science and Technology,17(3):64-67.
Xu Yunpeng, Tian Zhijian, Xu Zhusheng,et al,2002.Conversion of methane to C2 hydrocarbons via active carbon induced continuous microwave discharge under atmospheric pressure[J].Chemical Engineering of Oil & Gas,31(1):15-17,12.
Yang Kun, Liang Ke,2014.A comparison of gold recovery sche-me from cyanide liquid for gold concentrates in Jinping and Weishan[J].Nonferrous Metals Design,41(3):26-29.
霍焕儒,许普查,2015.煤质活性炭与椰壳活性炭提金性能的对比研究[C]//中国金属学会炭素材料分会.中国金属学会炭素材料分会第二十九届学术交流会论文集.石嘴山:中国金属学会.
江洪龙,王志伟,孙强,2020.废活性炭再生技术研究进展[J].绿色科技,(22):136-138,140.
李婷,王毅霖,张晓飞,等,2013.浅析活性炭再生技术的发展现状[C]//中国环境科学学会.2013中国环境科学学会学术年会论文集(第八卷).昆明:中国环境科学学会.
刘孝柱,杜家山,鲍云启,2012.全泥氰化提金厂工艺技术改造实践[J].矿冶工程,32(1):81-83.
刘彦超,刘海玉,乔晓磊,等,2019.活性炭微观结构与介电性能的研究[J].炭素技术,38(3):15-19.
梅治福,2016.提金活性炭再生工艺改进及应用[J].黄金,37(5):51-54.
浦燕新,韩颖,杨虎君,等,2021.微波辐射再生粉末活性炭试验研究[J].安徽化工,47(3):55-57.
孙康,蒋剑春,2008.活性炭再生方法及工艺设备的研究进展[J].生物质化学工程,42(6):55-60.
檀素霞,王同华,谭瑞淀,等,2006.微波加热技术在多孔炭处理中的应用 [J].炭素技术,25(4):35-39.
王硕,2017.甘肃某金矿浸金工艺试验研究[J].黄金科学技术,25(4):122-127.
翁元声,2004.活性炭再生及新技术研究[J].给水排水,30(1):86-91.
肖敬飞,2009.炭浆法处理河台金矿原矿石的工艺与实践[J].黄金科学技术,17(3):64-67.
徐云鹏,田志坚,徐竹生,等,2002.活性炭引发的常压连续微波放电下甲烷转化制C2烃[J].石油与天然气化工,31(1):15-17,12.
杨坤,梁可,2014.金平和巍山精金矿氰化液中金的回收方案比选[J].有色金属设计,41(3):26-29.
中国标准化研究院,2017. 家用和类似用途微波炉能效限定值及能效等级: [S].北京:中华人民共和国国家质量监督检验检疫总局.
[1] 党晓娥,王璐,孟裕松,宋永辉,吕超飞 . 某环保药剂的浸金性能及贵液中金的活性炭吸附特性[J]. 黄金科学技术, 2017, 25(6): 114-120.
[2] 罗永红,张相钰,韦真周,陶进芳,覃辉平,陈曼,林凌宇. 活性炭富集原子吸收分光光度法测定矿石中金的不确定度评定[J]. 黄金科学技术, 2015, 23(5): 77-82.
[3] 刘志亮,肖文凯. 诺芮特柱状活性炭在炭浆提金工艺中的应用[J]. 黄金科学技术, 2015, 23(4): 102-106.
[4] 曹文丽,张大勐,邢宁宁. 碘量法测定金泥中的金[J]. 黄金科学技术, 2014, 22(5): 88-90.
[5] 吴向阳,于振福,韩路波,贾文涛. 活性炭吸附选矿废水中金等有价金属[J]. 黄金科学技术, 2013, 21(2): 51-54.
[6] 何巧玲,肖娟,汪永顺. 氯金酸钠代替氯金酸测定矿石中金含量的研究[J]. J4, 2012, 20(3): 73-75.
[7] 孙玉刚,陈光辉. 含氰废水处理方法的研究[J]. J4, 2011, 19(1): 74-76.
[8] 杨明荣, 牟长贤. 活性炭富集分离—碘量法测定金矿石中金的不确定度评定[J]. J4, 2009, 17(2): 46-50.
[9] 陈荷芳. 交流变频调速技术在鼓风机上的应用[J]. J4, 2004, 12(4): 39-41.
[10] 陈荷芳. 高村矿区建立干式充填储料系统方案初探[J]. J4, 2004, 12(3): 32-34.
[11] 艾满乾. 活性炭吸附氧化法处理选矿含氰尾水的实践[J]. J4, 2001, 9(2): 37-41.
[12] 邓彤. 浸出体系中金的回收[J]. J4, 1994, 2(6): 36-44.
[13] 孙兴家. 活性炭吸附金的机理、应用及工艺管理[J]. J4, 1994, 2(5): 34-39.
[14] 谷成山, 康振河, 焦方学. 载金炭解吸技术现状[J]. J4, 1993, 1(4): 29-.
[15] 卞直旭,李守纯,魏莉, 郭晓明,张兴文,王秋波. 山楂核活性炭在提炼黄金中应用的扩大试验结果[J]. J4, 1993, 1(3): 29-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!