img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (2): 278-284.doi: 10.11872/j.issn.1005-2518.2020.02.094

• Mining Technology and Mine Management • Previous Articles    

Mineralogical Characterization of a Gold Ore in Sagaw Province,Myanmar

Kaibin FU1,2(),Weiqing WANG1,2,Taotao ZHAO3,Meiqiao LONG1,2,Puyao HOU1,2,Mingxia DU1,2   

  1. 1.Key Laboratory of Solid Waste Treatment and Resource Recycle,Ministry of Education,Mianyang 621010,Sichuan,China
    2.School of Environment and Resource,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China
    3.Sichuan Hailan Qingtian Environmental Protection Technology Co. , Ltd,Chengdu 610045,Sichuan,China
  • Received:2019-06-20 Revised:2019-11-24 Online:2020-04-30 Published:2020-05-07

Abstract:

As trade friction between China and the United States escalates,international concerns about the creditworthiness of the United States will have a negative impact on the status of the dollar as a national currency,countries may increase their holdings of gold and demand for gold will increase.Myanmar is one of the most promising countries for China’s direct mining investment.The gold resources in Burma are abundant and widely distributed.At present,there are few reports on the development and utilization of gold mines in Myanmar.It is of great significance to strengthen basic research on overseas mineral resources and avoid technical risks.Mineral development investment risk is bigger due to lack of basic materials of process mineralogy of a gold mine in sagaing province,Myanmar.The chemical composition,mineral composition,particle size distribution,physical phase and dissociation degree of gold and structure of ore were studied by means of X-ray diffraction (XRD),scanning electron microscope (SEM) and chemical analysis to find out the process mineralogy characteristics of a gold mine in Sagaw Province,Myanmar.The results show that the grade of gold is 5.13×10-6,which is the main valuable element.The ore has autogenous grain structure,block structure,patchy structure and disseminated structure.The mineral composition of the ore is simple,the metal minerals are mainly pyrite (14.75%),a small amount of chalcopyrite,magnetite and porphyry,and the gangue minerals are mainly quartz,plagioclase,calcite,chlorite and white mica.The distribution rate of gold in heavy minerals is 3.94%.Free gold is hornlike,massive,flaky and circular, the fineness of gold is good (more than 93%).Gold is easy to dissociate.Most of the gold in the non-heavy minerals has been dissociated,the distribution rate of free gold is 92.68%.The distribution rate of gold parcel is 3.38%.The monomer dissociation degree of fine-grained gold is also relatively high.In the -0.074 mm grain size,The monomer gold content is 98.72%,the adherent-gold content is 1.28%.After 60 h of full-mud cyanidation,the gold leaching rate reached 90.19%,which was close to the rule of gold monomer dissociation degree in the gold mine.It is necessary to continue to strengthen the research on the theory and technology of selecting and metallurgy of a gold mine in shijie province and improve its technical and economic indexes.

Key words: Myanmar, gold mine, process mineralogy, sulfide, mineral liberation

CLC Number: 

  • TF11

Table 1

Element composition of raw ore(%)"

化学成分质量分数化学成分质量分数
SiO247.65P2O50.29
Fe2O310.38MnO0.16
Al2O313.36Cr2O30.09
CaO11.37Co3O40.06
SO37.67BaO0.05
MgO3.34ZrO20.02
NaO3.22Au*5.13
K2O1.45C<0.05
TiO20.99As<0.05

Table 2

Mineral composition and its content in raw ore(%)"

金属矿物分子式质量分数脉石矿物分子式质量分数
黄铁矿FeS214.75石英SiO231.53
黄铜矿CuFeS2少量斜长石Na[AlSi3O8]-Ca[Al2Si2O8]18.73
磁铁矿Fe3O4少量方解石CaCO313.43
斑铜矿Cu5FeS4少量绿泥石Y3(Z4O10)(OH)2·Y3(OH)68.47
自然金Au<0.01白云母KAl2(AlSi3O10)(OH)29.79
其他金属矿物3.3

Table 3

Phase analysis result of gold"

矿相金品位/×10-6分布率/%
单体金粗颗粒单体金0.3010.87
微细单体金4.4085.75
总单体金3.9496.62
包裹金碳酸盐包裹金0.00770.15
石英和硅酸盐矿物包裹金0.0120.24
硫化矿包裹金0.152.99
褐铁矿包裹金0.000.00
总包裹金0.133.38
合计4.07100.00

Fig.1

SEM(a) and EDS(b) analysis result of monomer gold"

Table 4

Sieve analysis result of raw ore"

-0.074 mm含量占比/%筛析粒级/mm产率/%品位/×10-6金分布率/%金累计分布率/%
70+0.1655.635.125.305.30
-0.165~+0.07425.195.3724.8430.14
-0.074~+0.03827.845.2626.957.04
-0.038~+0.02521.665.5522.179.14
-0.02519.685.7720.86100.00
原矿1005.44100-
80+0.1655.465.345.305.30
-0.165~+0.07413.495.1912.8118.11
-0.074~+0.03828.845.3928.4346.54
-0.038~+0.02524.665.7926.1172.65
-0.02527.555.4327.35100.00
原矿1005.47100-
90+0.1654.855.544.844.84
-0.165~+0.0745.275.665.3710.21
-0.074~+0.03829.375.3728.3838.59
-0.038~+0.02528.815.3227.5866.17
-0.02531.75.9333.83100.00
原矿1005.56100-

Fig.2

Optical microscope photograph of raw ore"

Table 5

Determination results of dissociation degree of gold monomer"

粒级/mm

单体

占比/%

连生体

连生体

占比/%

连生关系占比/%连生体体积(V)大小分布率/%
脉石金+脉石V>3434>V>1212V>14V<14
+0.42010099.510.49--6.2393.77
-0.42~+0.09632.5667.4499.340.660.542.546.5490.38
-0.096~+0.07496.733.2799.210.7916.5418.9725.8738.62
-0.07498.721.2899.560.4422.5432.4738.546.45

Fig.3

SEM analysis of monomer dissociated gold in heavy fraction (dmax<0.1 mm)"

1 熊爱宗.全球贸易摩擦对国际货币体系的影响[J].国际金融研究,2019(3):46-54.
Xiong Aizong.Effect of global trade friction on international monetary system[J].Studies of International Finance,2019(3):46-54.
2 时海娜.特朗普政府下的中美贸易摩擦[J].现代商贸工业,2019,40(21):48-51.
Shi Haina.Sino-US trade friction under the Trump administration[J].Modern Business Trade Industry,2019,40(21):48-51.
3 崔敏利,叶锦华,何学洲.“一带一路”地区大型超大型金矿床地质背景与成矿作用[J].地质通报2017,36(1):154-167.
Cui Minli,Ye Jinhua,He Xuezhou.Geological setting and mineralization of large-superlarge gold deposites in “One Belt,One Road” region[J].Geological Bulletin of China,2017,36(1):154-167.
4 张青枝.“一带一路”背景下我国矿业绿色发展之对策[J].中国市场,2019(9):66-67.
Zhang Qingzhi.Countermeasures of China’s mining industry green development under the background of “One Belt and One Road”[J].China Market,2019(9):66-67.
5 郑明贵,胡志亮.海外矿业投资环境风险评价研究[J].黄金科学技术,2018,26(5):596-604.
Zheng Minggui,Hu Zhiliang.Study on environmental risk evaluation of overseas mining investment[J].Gold Science and Technology,2018,26(5):596-604.
6 周凯锋.云南周边五国矿业投资环境的可拓性研究[D].昆明:昆明理工大学,2010.
Zhou Kaifeng.The Extension Study on Mining Investment Environment of Yunnan Province Neighboring Five Countries[D].Kunming:Kunming University of Science and Technology,2010.
7 宋海燕.“一带一路”背景下的缅甸投资环境研究[D].临汾:山西师范大学,2017.
Song Haiyan.The Investment Environment of Myanmar Under the Background of “One Belt and One Road”[D].Linfen:Shanxi Normal University,2017.
8 郭泽君,丁世春,郭彬.缅甸联邦第二特区(佤邦)芒古弄地区金矿特征[J].地质与资源,2011,20(4):310-311.
Guo Zejun,Ding Shichun,Guo Bin.The characteristics of the gold deposites in Mongonon aera,Myanmar[J].Geology and Resources,2011,20(4):310-311.
9 范良军,刘文勇,辛荣,等.缅甸文多地区铜金矿找矿前景分析[J].世界有色金属,2018(2):82-83.
Fan Liangjun,Liu Wenyong,Xin Rong,et al.Prospect analysis of copper and gold prospecting in Burma[J].World Nonferrous Metals,2018(2):82-83.
10 陈剑锋.缅甸胶帕图金矿选冶工艺浅议[J].黄金科学技术,2011,19(1):58-60.
Chen Jianfeng.Discussion on the inspection of Kyaukpahto gold mine in Myanmar[J].Gold Science and Technology,2011,19(1):58-60.
11 傅开彬,王维清,黄阳,等.贵州某含金汞冶炼渣工艺矿物学研究[J].矿物学报,2013,33(2):158-162.
Fu Kaibin,Wang Weiqing,Huang Yang,et al.A study on process mineralogy of a gold-bearing smelting slag of mercury[J].Acta Mineralogical Sinica,2013,33(2):158-162.
12 傅开彬,秦天邦,汤鹏成,等.四川瓦基铜矿工艺矿物学与可浮性实验[J].矿物学报,2019,39(3):305-310.
Fu Kaibin,Qin Tianbang,Tang Pengcheng,et al.Study on process mineralogy of Waji copper mine in Sichuan,China and its flotation performance[J].Acta Mineralogical Sinica,2019,39(3):305-310.
13 李赛,齐伟,张雁,等.碳质金矿生物预氧化研究进展[J].贵金属,2018,39(3):72-78.
Li Qian,Qi Wei,Zhang Yan,et al.Advances in biopreoxidation of carbonaceous gold ore[J].Precious Metals,2018,39(3):72-78.
14 张伟晓,闾娟沙,张济文.国外某含砷难处理金矿提金工艺试验[J].有色金属(冶炼部分),2019(4):56-59.
Zhang Weixiao,Juansha Lü,Zhang Jiwen.Technological test on abroad arsenic bearing refractory gold mine[J].Nonferrous Metals (Extractive Metallurgy),2019(4):56-59.
15 De Carvalho L C,Da Silva S R,Giardini R M N,et al.Bio-oxidation of refractory gold ores containing stibnite and gudmundite[J].Environmental Technology and Innovation,2019,15:1-11.
16 赵玉卿,黄秉雄,刘磊,等.蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J].矿产综合利用,2018(2):7-11.
Zhao Yuqing,Huang Bingxiong,Liu Lei,et al.Summary of serpentine,chlorite,talc floatability and rejecting[J].Multipurpose Utilization of Mineral Resources,2018(2):7-11.
17 陈乔,杨洪英,陈贵民,等.尼尔森重选在我国石英脉型金矿选矿工艺中的应用[J].黄金科学技术,2017,25(5):73-79.
Chen Qiao,Yang Hongying,Chen Guimin,et al.Application of Knelson gravity concentration in quartz vein type gold beneficiation process in China[J].Gold Science and Technology,2017,25(5):73-79.
18 Cook R B,Francis C A,Mauthner M.The occurrence and characteristics of gold nuggets and masses[J].Rocks and Minerals,2017,92(4):318-343.
19 周彩斌,周斌,石贵明,等.分级浓度对磨矿分级回路产品粒度分布的数值模拟[J].有色金属(选矿部分),2016(2):60-64.
Wu Caibin,Zhou Bin,Shi Guiming,et al.Numerical simulation of product particle size distribution under grader concentration in grinding-classification circuit[J].Nonferrous Metals (Mineral Processing Section),2016(2):60-64.
20 衣德强,张祖刚,甘茂武,等.梅山铁矿矿泥选别工艺优化[J].中国资源综合利用,2016,34(5):35-37.
Yi Deqiang,Zhang Zugang,Gan Maowu,et al.Optimization of ore slime beneficiation process for Meishan iron mine ore[J].China Resoures Comprehensive Utilization,2016,34(5):35-37.
[1] Wei QI,Wei LI,Zhenyang LI,Guoyan ZHAO. Rock Mass Quality Evaluation of Underground Mine Based on CRITIC-CW Method [J]. Gold Science and Technology, 2020, 28(2): 264-270.
[2] Zhou CHEN,Yujun ZUO. Stability Analysis of Surrounding Rock of Chamber and Pillar Mining in Getang Gold Mine [J]. Gold Science and Technology, 2020, 28(2): 271-277.
[3] Fei LI,Ziqiang CHEN. Process Design Optimization and Application of a Dressing and Metallurgy Pilot Plant in Qinghai [J]. Gold Science and Technology, 2020, 28(1): 142-147.
[4] Xin HUANG,Qian SONG,Yongjun WANG,Lijun SHEN,Yuzhen ZHU,Chao SUN. Evaluation of Gold Resource Potential in Qixia-Daliliuxing Area,Shandong Province [J]. Gold Science and Technology, 2020, 28(1): 21-31.
[5] Xionghui XIE. Study on Technological Mineralogy of Gold Concentrate in Longnan Zijin [J]. Gold Science and Technology, 2019, 27(6): 950-956.
[6] Wenping ZHANG, Mingming CAI, Chao XU. Process Mineralogy of a Gold-bearing Primary Ore [J]. Gold Science and Technology, 2019, 27(5): 770-776.
[7] Jiayuan CAO,Fengshan MA,Jie GUO,Guodong ZHANG,Zhaoping LI. Study on Subsidence Prediction of Inclined Orebody Cut and Fill Mining in Seabed [J]. Gold Science and Technology, 2019, 27(4): 522-529.
[8] Zilong LIU,Hongying YANG,Linlin TONG,Guobao CHEN. Experimental Study on Flotation Optimization of Copper Oxide Ore in High Altitude Environment [J]. Gold Science and Technology, 2019, 27(4): 589-597.
[9] Xueliang DUAN,Fengshan MA,Haijun ZHAO,Jie GUO,Hongyu GU,Shuaiqi LIU. Study on Water Sources Identification and Mixing Ratios of Mine Water [J]. Gold Science and Technology, 2019, 27(3): 406-416.
[10] Yuanfeng DONG,Rongjun SI,Zhonglin XIANG,Chaochen FENG,Guoquan ZHANG,Yingmei ZHANG. Analysis of Mineralization Space in Guilaizhuang Gold Mining Area Based on Surpac Software [J]. Gold Science and Technology, 2019, 27(2): 163-171.
[11] Ming WEI,Bin ZHAO,Rui WANG,Zhenxing PAN,Liguo CAO. Study on the Distribution of Mineral Grades Based on 3D Model:Taking Shaanxi Longtougou Gold Mine as an Example [J]. Gold Science and Technology, 2019, 27(2): 172-180.
[12] Guowei LIU,Fengshan MA,Jie GUO,Yunlong DU,Chenglu HOU,Wei LI. Application of Multivariate Statistical Analysis to Identify Water Source in Coast Mine Area:As Example of Sanshandao Gold Mine [J]. Gold Science and Technology, 2019, 27(2): 207-215.
[13] Langfeng TANG,Qiuyue SHENG,Yingqiang MA,Wanzhong YIN. Process Mineralogy of a Nickel Ore in South Central Africa [J]. Gold Science and Technology, 2019, 27(2): 285-291.
[14] Peijiao JU. Geological Characteristics and Ore-controlling Factors of Liyuan Gold Deposit, Shanxi Province [J]. Gold Science and Technology, 2018, 26(6): 706-717.
[15] Pingtian MING,Guangshan JIANG. Present Situation and Research Progress of Independent Rock Gold Mine in Qinghai Province [J]. Gold Science and Technology, 2018, 26(5): 622-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!