img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (2): 285-291.doi: 10.11872/j.issn.1005-2518.2019.02.285

• Mining Technology and Mine Management • Previous Articles    

Process Mineralogy of a Nickel Ore in South Central Africa

Langfeng TANG1(),Qiuyue SHENG1,Yingqiang MA1,2(),Wanzhong YIN1   

  1. 1. College of Zijin Mining, Fuzhou University, Fuzhou 350116,Fujian,China
    2. Zijin Mining Group Co., Ltd., Shanghang 364200,Fujian,China
  • Received:2018-03-26 Revised:2018-09-01 Online:2019-04-30 Published:2019-04-30
  • Contact: Yingqiang MA E-mail:2816911415@qq.com;mayingqiang@mail.fzu.edu.cn

Abstract:

In order to study the processing mineralogy characteristics of nickel ore in South Central Africa, and provide a basis for its reasonable recovering,use the X ray fluorescence spectrum analysis, multi element analysis, X ray diffraction and microscopic examination and statistics, the chemical and minerals composition and embedding characteristics, ore structure and texture and the granularity of pyrrhotite and nickel pyrite are analyzed.According to the results of XRF analysis:The main chemical compositions of the ore are iron, sulfur, silicon, magnesium, calcium, nickel, copper, aluminium,cobalt and so on,in these elements,the nickel can be used in industrial, and the copper, cobalt, sulfur are valuable elements,which can be recovered comprehensively.The results of multi-element analysis showed that the content of nickel in the ore is 3.42%,the main associated impurities are SiO2, MgO and CaO.Through X-ray diffraction analysis, microscopic detection and statistics, concluded that the main mineral composition of the ore is pyrrhotite with a content of 76.06%, nickel-bearing pyrite with a content of 9.74%, and gangue minerals with magnesium silicate minerals such as dolomite, talc and chlorite with a content of 7.75%, 2.39% and 1.43%, respectively.The study on the structure and dissemination characteristics of the ore showed that the dissemination size of pyrrhotite in the ore is mainly coarse and uniform, and the dissemination size of nickel pyrite is also coarse, but not uniform. Pyrrhotite,nickel pyrite and chalcopyrite coexist closely,and have interpenetration,encapsulation and substitution phenomena.They are closely distributed in aggregates, forming massive ore structures.In addition, a small number of pyrrhotite, nickel pyrite and magnetite are distributed in gangue minerals in granular form, showing disseminated structure.Some gangue minerals are veined along pyrrhotite and nickel pyrite. Intergranular, fissure filling cementation forms vein-like, reticular structure.The results of particle size measurement and analysis of pyrrhotite and nickel pyrite in ore under microscope show that the pyrrhotite in ore is mainly coarse grained, mainly distributed in the range of +75 micron, the content of +150 micron is 92.76%, the content of fine grains is less, and the distribution is uniform; The size of pyrrhotite is coarse, but the distribution is not uniform,except for the content of +150 micron is 38.2% and the content of pyrrhotite is more than that of +150 micron. Except for 16.63% of -150+100 μm grain size, the content of other grain size ranges is about 10%.On the whole,the ore with high nickel grade,the granularity of nickel bearing minerals is relatively coarse, which is easy selection ore.The existence of magnesium bearing minerals, such as dolomite and talcum,affect the separation of nickel ore.

Key words: nickel ore, process mineralogy, magnesium bearing gangue minerals, structure and texture, disseminated grain size

CLC Number: 

  • TD926

Table 1

XRF analysis results of ore"

组分质量分数/%组分质量分数/%
Fe2O334.2576NiO2.4192
SO333.8388CuO0.3281
SiO213.3193Al2O30.2687
MgO9.9334Co2O30.1456
CaO5.2447P2O50.1152
MnO0.0704K2O0.0075
Na2O0.0515

Table 2

Multi-element analysis results of ore"

组分质量分数/%组分质量分数/%
Fe45.09SiO26.21
Ni3.42MgO4.38
Cu0.42CaO3.58
S28.60Al2O30.034

Table 3

Main mineral composition and relative content in the ore"

矿物名称质量分数/%矿物名称质量分数/%
磁黄铁矿76.06滑石2.39
镍黄铁矿9.74绿泥石1.43
黄铜矿2.11水镁石0.24
磁铁矿0.16石英0.12
钛铁矿菱沸石
白云石7.75

Fig.1

Disseminated characteristics of pyrrhotite"

Fig.2

Disseminated characteristics of pentlandite"

Fig.3

Disseminated characteristics of chalcopyrite and magnetite"

Table 4

Particle size analysis results of main minerals in ore"

粒度范围/μm磁黄铁矿镍黄铁矿
含量/%累计含量/%含量/%累计含量/%
+15092.7692.7638.2038.20
-150+1003.0095.7616.6354.83
-100+751.7997.5513.7568.58
-75+530.7698.3112.3880.96
-53+370.9499.258.9089.86
-370.75100.0010.14100.00
1 许时.矿石可选性研究[M]. 北京:冶金工业出版社, 1981.
XuShi.Study on Mineral Separability[M].Beijing:Metallurgical Industry Press, 1981.
2 胡秀梅. 金平镍矿Ⅰ号岩体贫镍矿石工艺矿物学研究[D]. 昆明:昆明理工大学, 2006.
HuXiumei.Study on Process Mineralogy of Jinping Nickel ore No.1 Rock Poor Nickel Ore[D].Kunming:Kunming University of Science and Technology,2006.
3 刘明宝, 段理祎, 高莹,等. 我国镍矿资源现状及利用技术研究[J]. 中国矿业, 2011, 20(11):98-102.
LiuMingbao, DuanLiwei, GaoYing, et al. Present situation and utilizing technique of nickel ore in China[J]. China Mining Magazine, 2011, 20(11):98-102.
4 陈甲斌, 许敬华. 我国镍矿资源现状及对策[J].现代矿业, 2006, 25(8):1-3.
ChenJiabin, XuJinghua.Status quo of nickel mineral resource of our country and countermeasures[J].Modern Mining, 2006, 25(8):1-3.
5 曹异生. 中国镍工业的进展及前景展望[J]. 世界有色金属, 1996(12):37-40.
CaoYisheng.The progress and prospect of the nickel industry in China[J].World Nonferrous Metals, 1996(12):37-40.
6 赵武壮. 对我国镍矿资源可持续发展的看法[J]. 中国金属通报, 2004(25):6-9.
ZhaoWuzhuang.Views on the sustainable development of nickel mineral resources in China[J].China Metal Bulletin, 2004(25):6-9.
7 宓奎峰, 王建平, 柳振江,等. 我国镍矿资源形势与对策[J]. 中国矿业, 2013(6):6-10.
MiKuifeng, WangJianping, LiuZhenjiang, et al.The current situation and countermeasures of nickel resources of China[J]. China Mining Magazine ,2013(6):6-10.
8 杨伟. 某低品位混合铜镍矿石浮选工艺研究[J]. 新疆有色金属, 2017(1):92-95.
YangWei.Study on the flotation process of a low grade copper-nickel sulfide ore[J].Xinjiang Nonferrous Metals, 2017(1):92-95.
9 黎继永, 童雄, 韩彬,等. 镁质硅酸盐型铜镍矿酸浸脱镁试验研究[J]. 硅酸盐通报, 2016, 35(4):1046-1052.
LiJiyong, TongXiong, HanBin, et al.Experimental study on acid leaching out of magnesium from copper-nickel ore containing magnesium silicate[J].Bulletin of the Chinese Ceramic Society, 2016, 35(4):1046-1052.
10 杨子轩, 谢贤, 韩彬,等. 金川铜镍矿浮选中矿脱镁浸渣选矿试验研究[J]. 硅酸盐通报, 2016, 35(6):1725-1732.
YangZixuan, XieXian, HanBin, et al.Experimental research on mineral processing of leaching slag of magnesium removal of Cu-Ni ore flotation middling from Jinchuan[J].Bulletin of the Chinese Ceramic Society, 2016, 35(6):1725-1732.
11 穆枭, 王章鹤, 刘旭,等. 广西某铜镍硫化矿石选矿试验[J]. 金属矿山, 2013, 42(9):84-87.
MuXiao, WangZhanghe, LiuXu, et al.Ore dressing test of a copper-nickel sulfide ore in Guangxi[J].Metal Mine, 2013, 42(9):84-87.
12 周乐光.工艺矿物学[M].北京: 冶金工业出版社,2013:177-179.
ZhouLeguang.Process Mineralogy[M].Beijing: Metallurgical Industry Press,2013:177-179.
13 赵礼兵, 程少逸, 袁致涛,等. 朝鲜某地硫化铜镍矿浮选试验研究[J]. 金属矿山, 2010, 39(4):84-88.
ZhaoLibing, ChengShaoyi, YuanZhitao, et al. Study on flotation technology of copper-nickel sulfide ore in north Korea[J]. Metal Mine, 2010, 39(4):84-88.
14 赵杰, 谭欣, 王中明, 等. 哈萨克斯坦某铜镍硫化矿可选性试验研究[J]. 有色金属(选矿部分), 2015(3):4-8.
ZhaoJie, TanXin, WangZhongming, et al. Experimental study on beneficiability of copper-nickel sulfide ore in Kazakhstan[J].Nonferrous Metals(Mineral Processing Section) , 2015(3):4-8.
15 刘玉纯. 岩矿鉴定新技术——X射线荧光光谱微区分析在有色金属矿石鉴定上的应用研究[D]. 武汉:中国地质大学, 2013.
LiuYuchun. A Novel Technology for Rock-mineral Identification: Application of Micro-X-ray Fluorescence Spectrometry in Analysis of Nonferrous Metallic Ores[D].Wuhan: China University of Geosciences, 2013.
16 谷华娟. 岩矿鉴定法在金矿床矿石特征分析中的应用[J]. 世界有色金属, 2016(9):91-92.
GuHuajuan.Rock ore assay method in the application of the analysis of characteristics of gold deposits in the ore[J].World Nonferrous Metals, 2016(9):91-92.
17 周贺鹏, 谭亮, 姜学瑞,等. 通化松柏岭铜镍矿石工艺矿物学特征[J]. 金属矿山, 2011, 40(4):72-76.
ZhouHepeng, TanLiang, JiangXuerui, et al. Process mineralogy characteristics of Tonghua Songbailing copper-nickel ore[J]. Metal Mine, 2011, 40(4):72-76.
18 孔凡斌, 蒋少涌, 徐耀明,等. 江西武山铜矿床海底喷流与岩浆热液叠加成矿作用:控矿地质条件、矿石结构构造与矿床地球化学制约[J]. 岩石学报, 2012, 28(12):3929-3937.
KongFanbin, JiangShaoyong, XuYaoming, et al. Submarine hydrothermal exhalation with superimposed magmatic-hydrothermal mineralization in the Wushan copper deposit,Jiangxi Province: Constraints from geology,ore texture and ore deposit geochemistry[J].Acta Petrologica Sinica, 2012, 28(12):3929-3937.
19 唐玉山. 新疆哈密市香山西段铜镍矿地质特征及矿床成因[J]. 新疆有色金属, 2009, 32(增2):22-26.
TangYushan.Geological characteristics and genesis of copper nickel deposit in Xiangshan west section, Hami, Xinjiang[J].Xinjiang Nonferrous Metals, 2009, 32(Supp.2):22-26.
20 赵慧涛, 张丽娜, 胡艳宏,等. 岩矿鉴定法矿石特征分析中的应用[J]. 山东冶金, 2015(2):79-80.
ZhaoHuitao, ZhangLina, HuYanhong, et al. Application of rock ore identification method in the analysis of ore characteristics[J]. Shandong Metallurgy, 2015(2):79-80.
21 周姣花, 汪建宇, 顾茗心,等. 利用X射线衍射和岩矿鉴定等技术研究河南汤家坪钼矿区主要矿物标型特征[J]. 岩矿测试, 2015, 34(1):82-90.
ZhouJiaohua, WangJianyu, GuMingxin, et al.The main mineral typomorphic characteristics of the Henan Tangjiaping molybdenum district using X-ray diffraction and rock mineral identification technology[J].Rock and Mineral Analysis, 2015, 34(1):82-90.
[1] CHEN Daoqian,FU Kaibin,DONG Faqin,HU Ruquan,DENG Quanlin,XU Longhua,ZHANG Yalong,YANG Yongqiang. A Study on Process Mineralogy of Polymetallic Low-grade Tailings of Liwu Copper Ore,Sichuan Province [J]. Gold Science and Technology, 2015, 23(6): 70-74.
[2] MA Yutian,CHEN Dalin,CHEN Zhiyu,ZHONG Qingshen,HUANG Hujun,DU Yanjun. Study on the Pretreatment Technology of Refractory Gold Concentrate Containing High Arsenic and Sulfur [J]. Gold Science and Technology, 2014, 22(4): 103-107.
[3] LIN Honghan. An Experimental Research on Resource Utilization of Gold Copper Waste Rock [J]. Gold Science and Technology, 2014, 22(3): 77-81.
[4] CAO Chengchao. Research on Flotation Test at a Certain Mine in Xinjiang [J]. Gold Science and Technology, 2014, 22(3): 70-76.
[5] Joe ZHOU. Gold Geometallurgy and Its Application [J]. Gold Science and Technology, 2013, 21(5): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!