img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (4): 589-597.doi: 10.11872/j.issn.1005-2518.2019.04.589

• Mining Technology and Mine Management • Previous Articles     Next Articles

Experimental Study on Flotation Optimization of Copper Oxide Ore in High Altitude Environment

Zilong LIU(),Hongying YANG(),Linlin TONG,Guobao CHEN   

  1. School of Metallurgy,Northeastern University,Shenyang 110819,Liaoning,China
  • Received:2018-08-09 Revised:2018-12-04 Online:2019-08-31 Published:2019-08-19
  • Contact: Hongying YANG E-mail:longzi_2009@163.com;yanghy@smm.neu.edu.cn

Abstract:

The grade of high-altitude complex copper oxide flotation concentrates treated in a large-scale concentrator in Tibet was unqualified,and the recovery rate was not satisfactory.Through the study of mineralogy of minerals,the embedding characteristics of metal minerals and gangue minerals was obtained.The secondary copper ores with high copper content as well as the mineral arsenic bismuth copper ore are closely embedded with pyrite,where a mixture of copper and iron minerals often forms,which can affect the quality of copper concentrate and the recovery rate of copper.There are a certain amount of muscovite,feldspar,gypsum and calcite in the ores.Muddy phenomenon is prone to occur during the grinding process,which can affect the copper mineral floating.Thus,the optimization of grinding fineness and flotation reagent system for this refractory oxide copper ore was carried out in this study.On the spot,a large amount of lime was added,and the pH value was adjusted to 11 using high alkalinity to inhibit the rise of pyrite.From the study of process mineralogy,it was known that pyrite was dissolved by pyrite,and pyrite was suppressed at the same time.It will affect the rise of copper minerals.The new drug T506 is an inhibitor developed for the characteristics of pyrite.This inhibitor interacts with the surface of pyrite by adjusting the arrangement of polar groups to achieve the effect of inhibiting the rise of pyrite.The laboratory closed-circuit test was conducted in condition of the copper oxidation rate of ore is 36.80%,where combined copper oxide is 16.59%,copper grade is 0.51%,gold grade is 0.25×10-6,and silver grade is 14.24×10-6.In the selection process,the new inhibitor T506 is used to replace part of the lime in the rough selection section,and the amount of sodium sulfide is appropriately increased.On the basis of ensuring the pH value of 11 in the selected operation section,the amount of T506 is increased in an appropriate amount to obtain a concentrate with a copper grade of 19.72%,a gold grade of 2.66×10-6,a silver grade of 300.36×10-6, a copper recovery rate of 65.50%,a gold recovery rate of 18.36% and a silver recovery rate of 35.92%.The concentrate grade increased by 9.18% compared with the one in on-site production conditions,and the copper beneficiation recovery rate increased by 4.87%.Under the premise of ensuring the qualified copper grade of the produced concentrate,the recovery rate of copper is correspondingly increased,and the purpose of increasing the economic benefits of the enterprise and comprehensively utilizing valuable mineral resources is achieved.

Key words: copper oxide, process mineralogy, inhibitor, flotation optimization, high altitude environment

CLC Number: 

  • TD952

Table 1

Multi-element analysis results of raw ore(%)"

元素 质量分数 元素 质量分数
Cu 0.51 Ag 13.09
Pb 0.17 Au 0.26
Zn 0.06 Mo 0.023

Table 2

Copper phase analysis results of raw ore(%)"

铜物相 质量分数 占比
总铜 0.524 100.00
硫酸铜 0.001 0.10
自由氧化铜 0.106 20.21
结合氧化铜 0.087 16.59
次生硫化铜 0.021 4.00
原生硫化铜 0.310 59.10

Table 3

Molybdenum phase analysis results of raw ore(%)"

钼物相 质量分数 占比
总钼 0.023 100.00
硫化钼 0.018 78.26
氧化钼 0.005 21.74

Table 4

Copper mineral embedded feature detection"

嵌布特征 质量分数
合计 100.00
脉石粒间 41.86
脉石裂隙 30.18
脉石与硫化物粒间 16.38
硫化物中 2.43
脉石中 9.15

Table 5

Condition test results of grinding fineness"

磨矿细度(-0.074 mm含量)/% 样品名称 产率/% 铜品位/% 铜回收率/%
65 铜粗精矿 14.18 2.07 58.76
尾矿 85.82 0.24 41.24
原矿 100.00 0.51 100.00
67 铜粗精矿 13.98 2.14 59.18
尾矿 86.02 0.24 40.82
原矿 100.00 0.51 100.00
70 铜粗精矿 14.38 2.18 61.41
尾矿 85.62 0.23 38.59
原矿 100.00 0.51 100.00
75 铜粗精矿 13.67 2.31 61.40
尾矿 86.33 0.23 38.60
原矿 100.00 0.51 100.00

Table 6

Test results of T506 dosage"

T506用量/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
50 铜粗精矿 9.56 3.12 58.92
尾矿 90.44 0.23 41.08
原矿 100.00 0.51 100.00
100 铜粗精矿 10.34 3.12 60.99
尾矿 89.66 0.23 39.01
原矿 100.00 0.53 100.00
200 铜粗精矿 11.11 2.89 61.10
尾矿 88.89 0.23 38.90
原矿 100.00 0.53 100.00
300 铜粗精矿 10.85 2.91 60.63
尾矿 89.15 0.23 39.37
原矿 100.00 0.52 100.00

Table 7

Test results of sodium sulfide dosage"

Na2S用量/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
0,pH=7 铜粗精矿 5.04 3.77 37.04
尾矿 94.96 0.34 62.96
原矿 100.00 0.51 100.00
50,pH=7~8 铜粗精矿 10.85 2.98 61.20
尾矿 89.15 0.23 38.80
原矿 100.00 0.53 100.00
150,pH=7~8 铜粗精矿 10.59 3.07 62.31
尾矿 89.41 0.22 37.69
原矿 100.00 0.52 100.00
300,pH=7~8 铜粗精矿 10.21 3.41 66.95
尾矿 90.44 0.19 33.05
原矿 100.65 0.52 100.00
400,pH=8 铜粗精矿 11.11 3.24 68.07
尾矿 88.89 0.19 31.93
原矿 100.00 0.53 100.00
500,pH=8 铜粗精矿 12.14 2.91 67.92
尾矿 87.86 0.19 32.08
原矿 100.00 0.52 100.00

Table 8

Test results of butyl yellow medicinal"

丁基黄药用量/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
50 铜粗精矿 11.37 3.01 65.88
尾矿 88.63 0.20 34.12
原矿 100.00 0.52 100.00
70 铜粗精矿 11.97 3.00 68.23
尾矿 88.03 0.19 31.77
原矿 100.00 0.53 100.00
90 铜粗精矿 12.47 2.89 68.41
尾矿 87.53 0.19 31.59
原矿 100.00 0.53 100.00
110 铜粗精矿 13.51 2.67 68.70
尾矿 86.49 0.19 31.30
原矿 100.00 0.52 100.00

Table 9

Test results of sodium sulfide dosage in sweeping"

试验条件 样品名称 产率/% 铜品位/% 铜回收率/%
Na2S的用量为(0+0)(扫Ⅰ+扫Ⅱ,g/t),pH=7 铜粗精矿 11.68 3.05 68.28
中矿一 2.38 0.64 2.92
中矿二 1.11 0.48 1.02
尾矿 84.83 0.17 27.78
原矿 100.00 0.52 100.00
Na2S的用量为(150+50)(扫Ⅰ+扫Ⅱ,g/t),pH=7~8 铜粗精矿 11.88 3.01 68.15
中矿一 2.59 0.80 3.95
中矿二 1.35 0.60 1.54
尾矿 84.18 0.16 26.36
原矿 100.00 0.52 100.00
Na2S的用量为(300+150)(扫Ⅰ+扫Ⅱ,g/t),pH=7~8 铜粗精矿 11.79 3.05 68.10
中矿一 2.77 0.76 3.98
中矿二 1.47 0.62 1.72
尾矿 84.62 0.16 26.21
原矿 100.00 0.53 100.00

Table 10

Test results of selected condition optimization"

石灰用量/(g·t-1) T506用量(精Ⅰ+精Ⅱ)/(g·t-1 样品名称 产率/% 铜品位/% 铜回收率/%
0,pH=7 30+10 铜精矿 1.9 8.47 30.82
中矿 11.02 1.77 37.36
尾矿 87.08 0.19 31.82
原矿 100.00 0.52 100.00
50+30 铜精矿 1.42 10.47 27.98
中矿 11.24 1.92 40.73
尾矿 87.35 0.19 31.29
原矿 100.00 0.53 100.00
80+50 铜精矿 0.44 12.26 10.22
中矿 10.88 1.86 57.9
尾矿 88.68 0.19 31.88
原矿 100.00 0.53 100.00
400,pH=11 10+0 铜精矿 1.34 11.75 30.01
中矿 10.98 1.83 38.27
尾矿 87.68 0.19 31.72
原矿 100.00 0.53 100.00
30+10 铜精矿 0.77 24.14 35.41
中矿 10.77 1.6 32.68
尾矿 88.46 0.19 31.91
原矿 100.00 0.53 100.00
50+30 铜精矿 0.76 26.37 38.21
中矿 11.63 1.34 29.87
尾矿 87.62 0.19 31.92
原矿 100.00 0.52 100.00

Table 11

Test results of open circuit(%)"

样品名称 产率 铜品位 铜回收率
铜精矿 0.71 24.15 30.77
中矿一 0.31 4.16 2.31
中矿二 3.33 3.48 20.96
中矿三 9.74 0.82 14.44
中矿四 2.56 0.79 3.66
中矿五 1.79 0.59 1.91
中矿六 1.28 0.55 1.27
尾矿 80.27 0.17 24.56
原矿 100.00 0.55 100.00

Fig.1

Test flow of closed circuit"

Table 12

Test results of closed circuit"

样品名称 产率/% 品位 回收率/%
Cu/% Au/×10-6 Ag/×10-6 Cu Au Ag
铜精矿 1.70 19.72 2.66 300.36 65.50 18.36 35.92
尾矿 98.30 0.18 0.21 9.29 34.50 81.64 64.08
原矿 100.00 0.51 0.25 14.24 100.00 100.00 100.00
1 王鹏程,陈志勇,曹志明,等 .氧化铜矿石的选矿技术现状与展望[J].金属矿山,2016,45(5):106-112.
Wang Pengcheng , Chen Zhiyong , Cao Zhiming ,et al .Present situation and prospect of beneficiation technology of copper oxide ore[J].Metal Mine,2016,45(5):106-112.
2 王凯,崔毅琦,童雄,等 .难选氧化铜矿石的选矿方法及研究方向[J].金属矿山,2012,41(8):80-83,117.
Wang Kai , Cui Yiqi , Tong Xiong ,et al .Beneficiation method and research direction of refractory oxidized copper ores[J].Metal Mine,2012,41(8):80-83,117.
3 丁鹏,刘全军,逄文好 .哈萨克斯坦某低品位高氧化率铜矿选矿试验研究[J].有色金属(选矿部分),2014(1):9-12.
Ding Peng , Liu Quanjun , Pang Wenhao .Study on beneficiation of a low-grade copper ore with high oxidation rate of Kazakhstan[J].Nonferrous Metals(Mineral Processing Section),2014(1):9-12.
4 李潇雨,周满赓,王婧,等 .攀西钒钛磁铁矿硫族元素工艺矿物学研究[J].中国矿业,2016,25(1):118-124,134.
Li Xiaoyu , Zhou Mangeng , Wang Jing ,et al .Craft mineralogy research of chalcogens in Panxi vanadium-titanium magnetite[J].China Mining Magazine,2016,25(1):118-124,134.
5 谢峰,张汉平,陈献梅 .云南某沉积型铝土矿工艺矿物学研究[J].矿冶,2015,24(2):81-84.
Xie Feng , Zhang Hanping , Chen Xianmei .Study on process mineralogy of a sedimentary bauxite in Yunnan[J].Mining and Metallurgy,2015,24(2):81-84.
6 李红立,廖璐,尹江生,等 .内蒙古某稀有稀土矿工艺矿物学研究[J].内蒙古科技与经济,2016(3):76-78.
Li Hongli , Liao Lu , Yin Jiangsheng ,et al .Study on mineralogical technology of a rare mineral in Inner Mongolia[J].Inner Mongolia Science Technology and Economy,2016(3):76-78.
7 王立刚,刘万峰,孙志健 .西藏玉龙铜矿氧化铜钼矿选矿试验研究[J].有色金属(选矿部分),2009(4):1-3,11.
Wang Ligang , Liu Wanfeng , Sun Zhijian .The mineral processing research on oxidized copper-molybdemun ore from tibet yulong copper mine[J].Nonferrous Metals (Mineral Processing Section),2009(4):1-3,11.
8 方建军,李艺芬 .氧化铜矿的工艺矿物学特征与选矿工艺研究[J].云南冶金,2005,34(4):50-53.
Fang Jianjun , Li Yifen .Study on technological mineralogy and concentration of oxide copper ore[J].Yunnan Metallurgy,2005,34(4):50-53.
9 青岩,郭文鹏,张海荣,等 .玉龙铜矿难选氧化铜矿高效选矿及工业应用研究[J].中国矿山工程,2018,47(4):4-8,20.
Qing Yan, Guo Wenpeng , Zhang Hairong ,et al .Study on efficiency ore dressing and industrial application of refractory oxidized copper ore in Yulong copper mine[J].China Mine Engineering,2018,47(4):4-8,20.
10 孙志健,陈经华,李成必,等 .某含泥难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),2013(4):5-8,13.
Sun Zhijian , Chen Jinghua , Li Chengbi ,et al .Study on the beneficiation test of a refractory oxide copper ore containing high-content slimes[J].Nonferrous Metals (Mineral Processing Section),2013(4):5-8,13.
11 邱廷省,郑锡联,冯金妮 .氧化铜矿石选矿技术研究进展[J].金属矿山,2011,40(12):82-86.
Qiu Tingsheng , Zheng Xilian , Feng Jinni .Research progress of mineral processing technology of copper oxide ore [J].Metal Mine,2011,40(12):82-86.
12 蒋太国,方建军,张铁民,等 .氧化铜矿选矿技术研究进展[J].矿产保护与利用,2014(4):49-53.
Jiang Taiguo , Fang Jianjun , Zhang Tiemin ,et al .Progress in copper oxide ores beneficiation technology[J].Conservation and Utilization of Mineral Resources,2014(4):49-53.
13 赖亚J .泡沫浮选表面化学[M].何伯泉,陈祥涌,译.北京:冶金工业出版社,1987.
Laiya J .Foam Flotation Surface Chemistry[M].He Boquan,Chen Xiangyong,transl.Beijing:Metallurgical Industry Press,1987.
14 陈经华,孙志健,叶岳华 .同步浮选和异步浮选在氧化铜矿选矿中的应用研究[J].有色金属(选矿部分),2013(增):67-69.
Chen Jinghua , Sun Zhijian , Ye Yuehua .Research on application of synchronous and asynchronous floating in oxidizing copper mine[J].Nonferrous Metals(Mineral Processing Section),2013(Supp.):67-69.
15 唐平宇,王素,田江涛,等 .山西某难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),2013(5):10-13.
Tang Pingyu , Wang Su , Tian Jiangtao ,et al .Experiment study on mineral processing of a refractory oxide copper ore of Shanxi[J].Nonferrous Metals(Mineral Processing Section),2013(5):10-13.
16 朱建光,朱一民 .浮选药剂的同分异构原理和混合用药[M].长沙:中南大学出版社,2011:303-311.
Zhu Jianguang , Zhu Yimin .Principle of Isomerism and Mixture of Floating Pharmaceutical[M].Changsha:Central South University Press,2011:303-311.
17 周源,艾光华 .提高某难选氧化铜矿石铜回收率的试验研究[J].金属矿山,2005,35(10):44-46.
Zhou Yuan , Ai Guanghua .Test on improving copper recovery of a refractory copper oxide ore [J].Metal Mine,2005,35(10):44-46.
18 熊文良 .印尼某氧化铜矿选矿试验研究[J].金属矿山,2011,40(9):94-96.
Xiong Wenliang .Beneficiation study on a copper oxide ore from Indonesia[J].Metal Mine,2011,40(9):94-96.
19 张二林,朱雅卓,胡波,等 .西藏地区某高泥质氧化铜矿选矿试验研究[J].湖南有色金属,2015,31(5):16-18,41.
Zhang Erlin , Zhu Yazhuo , Hu Bo ,et al .Experiment study on a high-pelitic copper oxide in Tibet[J].Hunan Nonferrous Metals,2015,31(5):16-18,41.
[1] Langfeng TANG,Qiuyue SHENG,Yingqiang MA,Wanzhong YIN. Process Mineralogy of a Nickel Ore in South Central Africa [J]. Gold Science and Technology, 2019, 27(2): 285-291.
[2] WANG Yongliang,LV Cuicui,XIAO Li,DING Jian,FU Guoyan,YE Shufeng. [J]. Gold Science and Technology, 2016, 24(4): 144-148.
[3] CHEN Daoqian,FU Kaibin,DONG Faqin,HU Ruquan,DENG Quanlin,XU Longhua,ZHANG Yalong,YANG Yongqiang. A Study on Process Mineralogy of Polymetallic Low-grade Tailings of Liwu Copper Ore,Sichuan Province [J]. Gold Science and Technology, 2015, 23(6): 70-74.
[4] MA Yutian,CHEN Dalin,CHEN Zhiyu,ZHONG Qingshen,HUANG Hujun,DU Yanjun. Study on the Pretreatment Technology of Refractory Gold Concentrate Containing High Arsenic and Sulfur [J]. Gold Science and Technology, 2014, 22(4): 103-107.
[5] LIN Honghan. An Experimental Research on Resource Utilization of Gold Copper Waste Rock [J]. Gold Science and Technology, 2014, 22(3): 77-81.
[6] CAO Chengchao. Research on Flotation Test at a Certain Mine in Xinjiang [J]. Gold Science and Technology, 2014, 22(3): 70-76.
[7] Joe ZHOU. Gold Geometallurgy and Its Application [J]. Gold Science and Technology, 2013, 21(5): 76-80.
[8] ZHANG Deliang,QU Hongjun,LIU Yongguo,LI Yaoguo,YIN Qing. Reducing the Gold Grade for Carbon Cyanide Slag with Carbon Inhibito [J]. Gold Science and Technology, 2013, 21(3): 91-94.
[9] CHEN Jianfeng,CHEN Jian,WEN Yangsi. An Experimental Study on Mineral Separation for a Gold Ore with Low Grate [J]. J4, 2010, 18(6): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[2] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[3] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[4] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[5] LI Hong-Jie, CU Jing-Ji, MA Shu-Jiang. [J]. J4, 2010, 18(4): 41 -46 .
[6] YUAN Dong-Cheng, XU Xiao-Feng. [J]. J4, 2010, 18(4): 47 -49 .
[7] YI Cun-Chang, CANG En-Guang. [J]. J4, 2010, 18(4): 58 -61 .
[8] LENG Han-Song, DENG Yao-Ceng, XU Hua-Long, LIU Chao, WANG Zhuo. [J]. J4, 2010, 18(4): 65 -67 .
[9] LIU Jin-Feng, LIU Mo-Jiang, LI Ding-Kun, LI Tian-Dong. [J]. J4, 2010, 18(4): 80 -81 .
[10] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .