img

Wechat

Adv. Search

Gold Science and Technology ›› 2017, Vol. 25 ›› Issue (1): 93-98.doi: 10.11872/j.issn.1005-2518.2017.01.093

Previous Articles     Next Articles

Study on Stress-Strain Relationship of Cemented Backfilling with Different Aggregate Content

CAO Shirong,HAN Jianwen,XIAO Weijing,ZHUO Yulong,WANG Xiaojun,FENG Xiao   

  1. Jiangxi Key Laboratory of  Mining&Mining Engineering,Jiangxi University of Science and Technology,Ganzhou    341000,Jiangxi,China
  • Received:2016-07-25 Revised:2016-11-23 Online:2017-02-28 Published:2017-05-12

Abstract:

In order to study the influence of bulk aggregate on the stress-strain relationship of  backfilling,four groups of different aggregate replacement rate backfilling specimens were tested by uniaxial compression test in the RMT-150C rock mechanics test system.Experimental results show that aggregate has great influence on the physical parameters such as stress and strain,elastic modulus and so on.The strength of backfilling can be significantly improved with the amount of aggregate,at the same time to ensure that the variable performance of the absorption.It shows that the structure is another key factor with the exception of the material and the ratio who influence the peak stress and strain,this can provide  reference for the preparation of backfilling material for mining.The peak values of the four groups were 0.28,0.33,0.26 and 0.30,respectively.The peak strength and the damage degree of the filling with aggregate  content of 20%was the highest.The constitutive relation model of damage mechanics is more accurate to describe the stress and damage in the pre-peak stage of aggregate backfilling.

Key words: aggregate, backfilling, mechanical behavior, constitutive relation

CLC Number: 

  • TD853

[1] Fu Jianxin,Du Cuifeng,Song Weidong,et al.Strength sensitivity  and failure mechanism of  full tailings cemented backfills[J].Journal of University of Science and Technology Beijing,2014,36(9):1149-1157.[付建新,杜翠凤,宋卫东,等.全尾砂胶结充填体的强度敏感性及破坏机制[J].北京科技大学学报,2014,36(9):1149-1157.]
[2] Tao Ganqiang,Sun Bing,Song Lixia,et al.Optimal design of stope structural parameters using back-filling method[J].Journal of Mining & Safety Engineering,2009,26(4):460-464.[陶干强,孙冰,宋丽霞,等.充填法采场结构参数优化设计[J].采矿与安全工程学报,2009,26(4):460-464.]
[3] Ye Yicheng,Shi Yaobin,Wang Qihu,et al.Experimental study of deformation of wall rock and stoping sequence in mining gently inclined and multilayer deposits by backfill mining[J].Journal of Mining & Safety Engineering,2015,32(3):407-413.[叶义成,施耀斌,王其虎,等.缓倾斜多层矿床充填法开采围岩变形及回采顺序试验研究[J].采矿与安全工程学报,2015,32(3):407-413.]
[4] Yang Yaoliang,Deng Daiqiang,Hui Lin,et al.Theoretical analysis on cemented full tailings backfilling in deep and large size stope[J].Mining Research and Development,2007,27(4):3-4,20.[杨耀亮,邓代强,惠林,等.深部高大采场全尾砂 胶结充填理论分析[J].矿业研究与开发,2007,27(4):3-4,20.]
[5] Liu Zhixiang,Li Xibing.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,2006,27(9):1442-1446.[刘志祥,李夕兵.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,2006,27(9):1442-1446.]
[6] Dong Yuli,Xie Heping,Zhao Peng.Complete process acoustic emission characteristics and constitutive model of concrete under cyclic compression[J].Journal of Experimental Mechanics,1996,11(2):216-221.[董毓利,谢和平,赵鹏.循环受压砼全过程声发射实验及其本构关系[J].实验力学,1996,11(2):216-221.]
[7] Zhao Kui,Wang Xiaojun,Liu Hongxing,et al.Experimental study of mechanical behaviors of cemented tailings backfill roof with reinforcement[J].Rock and Soil Mechanics,2011,32(1):9-14,20.[赵奎,王晓军,刘洪兴,等.布筋尾砂胶结充填体顶板力学性状试验研究[J].岩土力学,2011,32(1):9-14,20.]
[8] Deng Daiqiang,Gao Yongtao,Wu Shunchuan,et al.Experimental study of destructive energy dissipation properties of backfill under complicated stress condition[J].Rock and Soil Mechanics,2010,31(3):737-742.[邓代强,高永涛,吴顺川,等.复杂应力下充填体破坏能耗试验研究[J].岩土力学,2010,31(3):737-742.]
[9] Causatis G.Strain-rate effects on concrete behavior[J].International Journal of Impact Engineering,2011,38(4):162-170.
[10] Gong Cong,Li Changhong,Zhao Kui.Experimental study on b-value characteristics of acoustic emission of cemented filling body under loading and unloading test[J].Journal of Mining & Safety Engineering,2014,31(5):788-794.[龚囱,李长洪,赵奎.加卸荷条件下胶结充填体声发射b值特征研究[J].采矿与安全工程学报,2014,31(5):788-794.]
[11] Hu Jingtao,Zhao Kui,Hu Huiming,et al.On the characteristics of acoustic emission of cemented tailings fill based on fractal theory[J].Nonferrous Metals Science and Engineering,2011,2(2):78-82.[胡京涛,赵奎,胡慧明,等.尾砂胶结充填体声发射特征的分形分析[J].有色金属科学与工程,2011,2(2):78-82.]
[12] Xie Yong,He Wen,Zhu Zhicheng,et al.Study on backfill acoustic emission characteristic and damage evolution under uniaxial compression[J].Chinese Journal of Applied Mechanics,2015,32(4):670-676,710.[谢勇,何文,朱志成,等.单轴压缩下充填体声发射特性及损伤演化研究[J].应用力学学报,2015,32(4):670-676,710.]
[13] Wang Xiaojun,Feng Xiao,Zhao Kang.Numerical simulation on acoustic emission of roof fill failure of mining drift with different cross-section[J].Mining Research and Development,2011(1):9-11,15.[王晓军,冯萧,赵康.不同回采断面顶板充填体破裂声发射数值模拟研究[J].矿业研究与开发,2011(1):9-11,15.]
[14] Xie Yong,He Wen,Liu Xianjun,et al.Acoustic emission characteristics for filling body during tensile tests and its numerical simulation[J].Nonferrous Metals Science and  Engineering,2015,6(3):94-99.[谢勇,何文,刘贤俊,等.拉伸试验中充填体声发射特性及数值模拟研究[J].有色金属科学与工程,2015,6(3):94-99.]
[15] Lemaitre J.How to use damage mechanics[J].Nuclear Engineering.& Design,1984,80(2):233-245.
[16] Deng Daiqiang.Study on Mechanical Properties,Damage and Stability of Extra-large Stope Filling Body in Anqing Copper Mine[D].Changsha:Changsha Mining Research Institute,2005.[邓代强.安庆铜矿特大型采场充填体力学性能、损伤及稳定性研究[D].长沙:长沙矿山研究院,2005.]
[17] Xie Heping.Damage Mechanics of Rock Concrete[M].Beijing:China University of Mining and Technology Press,1990.[谢和平.岩石混凝土损伤力学[M].北京:中国矿业大学出版社,1990.]
[18] Wang Xiaojun,Cao Shirong,Zhuo Yulong,et al.An experimental study on mechanical and toughness of cemented backfill with ballast under uniaxial compression[J].Science Technology and Engineering,2016,16(17):123-126.[王晓军,曹世荣,卓毓龙,等.块石含量对充填体力学特性与韧性影响试验研究[J].科学技术与工程,2016,16(17):123-126.]
[19] Feng Xiao,Cao Shirong,Zhuo Yulong,et al.Destructive tests on the cemented rock filling body under different stress paths[J].Mining Research and Development,2016,36(7):43-46.[冯萧,曹世荣,卓毓龙,等.不同应力路径下块石胶结充填体破坏试验研究[J].矿业研究与开发,2016,36(7):43-46.]
[20] Zhuo Yulong,Chen Chen,Cao Shirong,et al.Effects of ballast on strength characteristics and damage evolution of filling body[J].Gold Science and Technololgy,2016,24(3):76-80.[卓毓龙,陈辰,曹世荣,等.块石对充填体强度特性及损伤演化的影响[J].黄金科学技术,2016,24(3):76-80.]
[21] Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Specification for mix proportion design of ordinary concrete:JGJ55-2011[S].Beijing:China Building Industry Press,2011.[中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ55-211[S].北京:中国建筑工业出版社,2011.]
[22] Qiu Jingping,Yang Lei,Xing Jun,et al.Establishment of backfill’s damage constitutive model and its strength determination[J].Metal Mine,2016(5):48-51.[邱景平,杨蕾,邢军,等.充填体损伤本构模型的建立及其强度的确定方法[J].金属矿山,2016(5):48-51.]

[1] SHI Caixing, GUO Lijie, LI Wenchen, ZHANG Dan. Study on Filling Cementitious Materials Based on Lead-Zinc Smelting Slag and Its Application [J]. Gold Science and Technology, 2018, 26(2): 160-169.
[2] LIU Dingyi, WANG Liguan, CHEN Xin, ZHONG Deyun, XU Zhiqiang. Study on Multi Objective Optimization and Application of Medium and Long Term Plan for Underground Mine [J]. Gold Science and Technology, 2018, 26(2): 228-233.
[3] LIN Ge, GONG Fengqiang. Research on Evaluation Index of Red Sandstone Instability Under Different Stress [J]. Gold Science and Technology, 2018, 26(2): 195-202.
[4] CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98.
[5] DING Jianfeng. Research on the Ore Bunker Treatment of a Gold Mine [J]. Gold Science and Technology, 2017, 25(4): 52-57.
[6] LI Zongnan,GUO Lijie,YU Bin,SHI Caixing. Shearing Thinning Behavior of High Concentration Slurry Based on Bingham Model [J]. Gold Science and Technology, 2017, 25(4): 33-38.
[7] BAI Zhaoyang,WANG Guowei,ZHANG Peng,LIU Shuanping. Research on Pillaring Blasting Location Under Level Gob Group Conditions [J]. Gold Science and Technology, 2017, 25(4): 81-86.
[8] WANG Xinmin,RONG Shuai,ZHAO Maoyang,ZHANG Qinli . Concentration Equipment Optimization Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2017, 25(3): 77-83.
[9] XU Huaihao,LI Jinyou. Application Practice of Increasing Production and Reducing Consumption in Grinding System of Dayingezhuang Gold Mine [J]. Gold Science and Technology, 2017, 25(3): 116-120.
[10] HU Jianhua,YANG Chun,ZHOU Bingren,ZHOU Keping,ZHANG Shaoguo. Simulation of Fracture Propagation and Optimization of Parameters for Smooth Blasting of Coping in Roadway [J]. Gold Science and Technology, 2017, 25(2): 45-53.
[11] JIA Mintao,WANG Qunfang,WU Lengjun. Research Status and Prospect of Thermal Environmental Control Technology Under Deep Mining [J]. Gold Science and Technology, 2017, 25(2): 83-88.
[12] XIAO Weijing,CHEN Chen,LI Yongxin,WANG Xiaojun,CAO Shirong,HAN Jianwen. Creep Experiment and Model of Deep Limestone Under Step Loading [J]. Gold Science and Technology, 2017, 25(2): 76-82.
[13] LIU Zhixiang,GONG Yongchao,LI Xibing. Study on the Backfilling Material Properties Based on Fractal Theory and BP Neural Network [J]. Gold Science and Technology, 2017, 25(2): 38-44.
[14] WANG Xinmin,FAN Biao,ZHANG Deming,LI Shuai. Synthetic Judgement for Filling Scheme Optimization Based on AHP and TPOSIS Methods [J]. Gold Science and Technology, 2016, 24(5): 1-6.
[15] LAN Zhipeng,WANG Xinmin,WANG Hongjiang,CHEN Qiusong. Experiment Research on Slurry Setting Time’s Effect on High-sulphur Backfill’s Compressive Strength [J]. Gold Science and Technology, 2016, 24(5): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!