img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (5): 736-751.doi: 10.11872/j.issn.1005-2518.2023.05.062

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Geochemical Characteristics and Geological Significance of the Ore-forming Granite of Indosinian Baishi W-Cu Deposit in Southern Jiangxi Province

Li LI1,2(),Guoguang WANG2,Haili LI3,4(),Huiliang XIAO3,Lezhu CHEN3   

  1. 1.Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu, China
    2.State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210023, Jiangsu, China
    3.Nanjing Geological Survey Center, China Geological Survey, Nanjing 210016, Jiangsu, China
    4.University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2023-04-23 Revised:2023-07-03 Online:2023-10-31 Published:2023-11-21
  • Contact: Haili LI E-mail:1084621165@qq.com;njlihaili@163.com

Abstract:

The Baishi W-Cu deposit is a medium-sized quartz vein type deposit formed in Indosinian in southern Jiangxi Province.It belongs to the Nanling metallogenic belt.Although it had been exploited since the founding of the People’s Republic of China,few studies have been done on ore-forming mass.The Baishi granite is the main magmatic rock exposed in the mining area and it is recognized as the ore-forming rock.The Baishi granite has undergone carbonation,chlorite,and muscovite alteration.The Baishi granite has obvious tungsten and copper mineralization.In order to probe into the magma genesis and its relationship with metallogenesis,this study conducted detailed geochemical analysis for the Baishi granite.From the feature of the major elements,the Baishi granite has relatively high SiO2 contents (71.59%~75.36%),total alkali content(Na2O+K2O:6.28%~7.45%),aluminum saturation index(A/CNK:1.71~2.11) and differentiation index(DI:81.53~90.39).It can be inferred that the Baishi granite is peraluminous granite and it has a high degree of differentiation.In the characteristics of rare earth elements,the Baishi granite exhibits obvious enrichment of light rare earth elements,relative depletion of heavy rare earth elements(LREE/HREE=9.94~12.29) and obvious Eu negative anomaly(δEu=0.28~0.57).Additionally,in the diagram of trace element spider pattern,the Baishi granite is relatively enriched in large ion lithophile elements,such as Rb,Th and U,and depleted in high field strength elements,such as Nb and Ti.While Ba is depleted relative to Rb.The geochemical characteristics mentioned above and relevant geochemical diagrams of the Baishi granite display obvious characteristics of differential S-type granites.Based on the comprehensive analysis,it can be concluded that the Baishi granite is formed in the intraplate environment.The Baishi granite’s magma source is crust and it is mainly derived from the pelite.In addition,the fractional crystallization plays more important role in its forming process than partial melting.In terms of the tectonic setting,the Baishi granite was formed in the extensional environment after the Indosinian orogeny.More and more studies have shown that the Indosinian mineralization played an important role in W and Sn mineralization in South China,and the Baishi granite is closely related to the Indosinian mineralization in South China.

Key words: Baishi granite, geochemistry, S-type granite, Indosinian, metallogenesis, southern Jiangxi Province

CLC Number: 

  • P518.2

Fig.1

Regional geological map of Baishi tungsten (copper) deposit"

Fig.2

Geological map of the Baishi W-Cu deposit (modified after Geological Bureau of Jiangxi Province,1974)"

Fig.3

Petrographical characteristics of the Baishi granite"

Table 1

Major elements(wt),trace elements and rare earth elements(×10-6) compositions of the Baishi granite"

样品编号SiO2Al2O3K2ONa2OTFe2O3FeOMgOTiO2CaOP2O5MnOLOI总计
G001-YQ1-173.9513.494.372.941.891.540.420.250.540.220.061.3399.46
G001-YQ1-273.6713.814.333.002.081.800.460.280.580.230.061.3199.81
G003-YQ1-170.1714.934.022.143.772.410.890.581.140.290.092.20100.22
G003-YQ1-270.1214.564.182.093.872.370.910.601.070.270.092.25100.02
G003-H171.3013.786.330.174.550.720.630.500.040.140.022.5299.98
样品编号A/CNKA/NKLaCePrNdSmEuGdTbDyHoEr
G001-YQ1-11.721.8535.2972.088.5230.665.990.544.820.743.980.742.22
G001-YQ1-21.751.8837.6677.259.1032.706.430.555.160.794.250.802.38
G003-YQ1-12.042.4273.16153.8416.6159.1510.791.408.861.266.521.223.59
G003-YQ1-21.982.3269.87145.3515.8556.5410.411.368.581.216.411.223.58
G003-H12.112.1268.55125.6415.2753.688.891.456.270.753.430.621.87
样品编号TmYbLuRbBaThUNbTaHfZrTiY
G001-YQ1-10.332.230.33395.51217.6718.9310.1121.804.224.12134.511 539.7522.82
G001-YQ1-20.352.340.35392.86204.1419.748.9823.744.774.59153.491 704.6124.24
G003-YQ1-10.503.190.49314.28632.8434.778.7818.741.906.08225.953 600.6335.88
G003-YQ1-20.503.280.49321.12638.9133.508.4319.061.926.41239.313 689.3335.80
G003-H10.261.770.28654.761 049.4625.257.2116.071.625.49204.373 071.1218.34
样品编号VCrCoNiLiSrBeScMnGaPbBiDI
G001-YQ1-116.725.062.461.88109.5044.1824,614.90438.3123.5926.403.7390.39
G001-YQ1-218.025.392.852.00110.9343.1523.394.75456.6623.5528.525.3290.05
G003-YQ1-149.3812.609.635.82124.63150.9811.178.33692.3425.0143.441.5582.04
G003-YQ1-251.1411.709.375.30128.11148.5610.408.35677.3424.3542.551.2381.53
G003-H140.2510.401.010.74274.32156.5812.457.69209.2323.50905.263.5483.55

Fig.4

Total alkali silica (TAS) classification of magmatic rock system(base map according to Middlemost,1994)"

Fig.5

A/NK-A/CNK diagram of the Baishi granite(base map according to Shand,1943)"

Fig.6

Rare earth element chondrite-normalized spider diagram(a) and trace element primitive mantle-normalized spider diagram(b) of the Baishi granite(base map according to Boynton,1984;Sun et al.,1989)"

Fig.7

w(Zr+Nb+Ce+Y) - FeOT/MgO diagram(a)(base map according to Whalen et al.,1987) and w(SiO2) - FeOT/MgO diagram(b)(base map according to Eby,1990) of the Baishi granite"

Fig.8

Diagram of w(SiO2)-w(P2O5)(a),ACF(b)(base map according to Nakada et al.,1979),w(K2O)-w(Na2O)(c)and w(TFeO)-w(CaO)(d)(base map according to Chappell et al.,2001) of the Baishi granite in the Baishi W-Cu deposit"

Fig.9

δEu-(La/Yb)N diagram(a)(base map according to Sylvester,1998) and CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)diagram(b)(base map according to Gerdes et al.,2000)"

Fig.10

Rb-(Y+Nb)diagram of the Baishi granite"

Fig.11

Geodynamic model for the forming of the Baishi granite and the Baishi W-Cu deposit(the formation age of the Baishi granite and the Baishi W-Cu deposit"

Boynton W V,1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies[M]//Rare Earth Element Geochemistry.Amsterdam:Elsevier.
Broska I, Williams C T, Uher P,et al,2004.The geochemistry of phosphorus in different granite suites of the Western Carpathians,Slovakia:The role of apatite and P-bearing feldspar[J].Chemical Geology,205(1/2):1-15.
Brown M, Pressley R A,1999.Crustal melting in nature:Procecuting source processes[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,24(3):305-316.
Chappell B W,1999.Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J].Lithos,46:535-551.
Chappell B W, White A J R,2001.Two contrasting granite types:25 years later[J].Australian Journal of Earth Sciences,48(4):489-499.
Charvet J,2013.The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:An overview[J].Journal of Asian Earth Sciences,74:198-209.
Chen Binfeng, Zou Xinyong, Peng Linlin,et al,2019.Geological characteristics and heavy rare earth ore prospecting potential of Qingxi pluton rare earth deposit[J].Chinese Rare Earths,40(4):20-31.
Chen Jun, Lu Jianjun, Chen Weifeng,et al,2008.W-Sn-Nb-Ta-bearing granites in the Nanling range and their relationship to metallogenesis[J].Geological of China Universities,14(4):459-473.
Chen Jun, Wang Rucheng, Zhu Jinchu,et al,2013.Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling range,South China[J].Science China(Earth Sciences),44(1):111-121.
Chen L L, Ni P, Dai B Z,et al,2019.The genetic association between quartz vein- and greisen-type mineralization at the Maoping W-Sn deposit,southern Jiangxi,China:Insights from zircon and cassiterite U-Pb ages and cassiterite trace element composition[J].Minerals,9(7):411.
Chen Peirong, Kong Xinggong, Wang Yinxi,et al,1999.Rb-Sr isotopic dating and significance of Early Yanshanian Bimodal vocanic-intrusive complex from south Jiangxi Province[J].Geological Journal of China Universities,5(4):378-383.
Chen Yuchuan, Pei Rongfu, Zhang Hongliang,et al,1989.The Geology of Nonferrous and Rare Metal Deposits Related to Mesozoic Granitoids in the Nanling Region,China[M].Beijing:Geological Publishing House.
Eby G N,1990.The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos,26:115-134.
Fan Weiming, Wang Yuejun, Guo Feng,et al,2003.Mesozoic mafic magmatism in Hunan-Jiangxi Provinces and the lithospheric extension[J].Earth Science Frontiers,10(3):159-169.
Feng C Y, Zeng Z L, Zhang D Q,et al,2011.SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield,southern Jiangxi Province,China,and geological implications[J].Ore Geology Reviews,43(1):8-25.
Feng Chengyou, Feng Yaodong, Xu Jianxiang,et al,2007.Isotope chronological evidence for Upper Jurassic petrogenesis and mineralization of altered granite-type tungsten deposits in the Zhangtiantang area,southern Jiangxi[J].Geology in China,34(4):642-650.
Feng Chengyou, Zeng Zailin, Qu Wenjun,et al,2015.A geochronological study of granite and related mineralization of the Zhangjiadi molybdenite-tungsten deposit in Xingguo County,southern Jiangxi Province,China,and its geological significance[J].Acta Petrologica Sinica,31(3):709-724.
Gerdes A, WÖRner G, Henk A,2000.Post‐collisional granite generation and HT-LP metamorphism by radiogenic heating:The Variscan South Bohemian Batholith[J].Journal of the Geological Society,157(3):577-587.
Guo C L, Chen F C, Zeng Z L,et al,2012.Petrogenesis of the Xihuashan granites in southeastern China:Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J].Lithos,148:209-227.
Guo Chunli, Zheng Jiahao, Lou Fasheng,et al,2012.Petrography,genetic types and geological dynamical settings of the Indosinian granitoids in South China[J].Geotectonica et Metallogenia,36(3):457-472.
Harris N B W, Inger S,1992.Trace element modelling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,110:46-56.
Holloway N H,1982.North Palawan block,Philippines—Its relation to Asian mainland and role in evolution of South China Sea[J].The American Association of Petroleum Geologists Bulletin,66:1355-1383.
Hsü K J, Li J L, Chen H H,et al,1990.Tectonics of South China:Key to understanding West Pacific geology[J].Tectonophy-sics,183:9-39.
Hu R Z, Wei W F, Bi X W,et al,2012.Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit,central Nanling district,South China[J].Lithos,150:111-118.
Hua Renmin, Chen Peirong, Zhang Wenlan,et al,2005.Three major metallogenic events in Mesozoic in South China[J].Mineral Deposits,24(2):99-107.
Jiangxi Bureau of Geology,1974.Regional geological survey report-Xingguo(1∶200 000)[R].Nanchang:Jiangxi Bureau of Geology.
Jung S, Pfänder J A,2007.Source composition and melting temperatures of orogenic granitoids:Constraints from CaO/Na2O,Al2O3/TiO2 and accessory mineral saturation thermometry[J].European Journal of Mineralogy,19(6):859-870.
Lee C T A, Morton D M,2015.High silica granites:Terminal porosity and crystal settling in shallow magma chambers[J].Earth and Planetary Science Letters,409:23-31.
Li Guanglai, Hua Renmin, Wei Xinglin,et al,2011.Rb-Sr isochron age of single-grain muscovite in the Xushan W-Cu deposit central Jiangxi,and its geological significance[J].Earth Science(Journal of China University of Geosciences),36(2):282-288.
Li L, Li H L, Wang G G,et al,2022.Geochronology of the Baishi W-Cu deposit in Jiangxi Province and its geological significance[J].Minerals,12(11):1387.
Li W S, Ni P, Pan J Y,et al,2021.Constraints on the timing and genetic link of scheelite- and wolframite-bearing quartz veins in the Chuankou W ore field,South China[J].Ore Geology Reviews,133(126):104122.
Li W S, Ni P, Wang G G,et al,2020.A possible linkage between highly fractionated granitoids and associated W-mineralization in the Mesozoic Yaogangxian granitic intrusion,Nanling region,South China[J].Journal of Asian Earth Sciences,193:104314.
Li X H, Li W X, Li Z X,2007.On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range,South China[J].Chinese Science Bulletin,52(14):1873-1885.
Li X H, Li W X, Wang X C,et al,2009.Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range,South China:In situ zircon Hf-O isotopic constraints[J].Science in China(Series D:Earth Sciences),52(9):1262-1278.
Li X H, Li Z X, Li W X,et al,2006.Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island[J].The Journal of Geology,114(3):341-353.
Li Xianhua, Li Wuxian, Li Zhengxiang,2007.Re-discussion on the genetic classification and tectonic implications of the Yanshanian granitoids in the Nanling Range,South China[J].Chinese Science Bulletin,52(9):981-991.
Liang Huaying, Wu Jing, Sun Weidong,et al,2011.Discussion on Indosinian mineralization in South China[J].Acta Mineralogica Sinica,31(Supp.1):53-54.
Linnen R L, Keppler H,2002.Melt composition control of Zr/Hf fractionation in magmatic processes[J].Geochimica et Cosmochimica Acta,66(18):3293-3301.
Liu F L, Xu Z Q, Liou J G,et al,2004.SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses,south-western Sulu terrane,eastern China[J].Journal of Metamorphic Geology,22(4):315-326.
Liu Fulai, Xu Zhiqin, Yang Jingsui,et al,2004.Geochemical characteristics and UHP metamorphism of granitic gneisses in the main drilling hole of Chinese Continental Scientific Drilling Project and its adjacent area[J].Acta Petrologica Sinica,20(1):9-26.
Liu Huan, Zhao Xilin, Jiang Jian,et al,2021.The formation mechanism of the Xingguo vortex structure and its geological implication for the Mesozoic sinistral strike-slip in South China Block[J].Chinese Journal of Geology,56(3):808-828.
Liu Shanbao, Chen Yuchuan, Fan Shixiang,et al,2010.The second ore-prospecting space in the eastern and central parts of the Nanling metallogenic belt:Evidence from isotopic chronology[J].Geology in China,37(4):1034-1049.
Mao J W, Cheng Y B, Chen M H,et al,2013.Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J].Mineralium Deposita,48(3):267-294.
Mao J W, Ouyang H G, Song S W,et al,2019.Geology and metallogeny of tungsten and tin deposits in China[J].SEG Special Publication,22:411-482.
Mao Jingwen, Zhou Zhenhua, Feng Chengyou,et al,2012.A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J].Geology in China,39(6):1437-1471.
Middlemost E A K,1994.Naming materials in the magma/igneous rock system[J].Earth Science Reviews,37(3/4):215-224.
Nakada S, Takahashi M,1979.Regional variation in chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan[J].The Geological Society of Japan,85(9):571-582.
Ni P, Wang G G, Li W S,et al,2021.A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts,Cathaysia Block,South China[J].Ore Geology Reviews,133:104088.
Pearce J A, Harris N B W, Tindle A G,1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,25:956-983.
Pei Rongfu, Wang Yonglei, Li Li,et al,2008.South China great granite province and its metallogenic series of tungsten-tin poly-metallics[J].China Tungsten Industry,23(1):10-13.
Peng J T, Zhou M F, Hu R Z,et al,2006.Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China[J].Mineralium Deposita,41(7):661-669.
Peng Nengli, Wang Xianhui, Yang Jun,et al,2017.Re-Os dating of molybdenite from Sanjiaotan tungsten deposit in Chuankou area,Hunan Province,and its geological implications[J].Mineral Deposits,36(6):1402-1414.
Potratz G L, Geraldes M C, Martins M V A,et al,2021.Sana Granite,a post-collisional S-type magmatic suite of the Ribeira Belt(Rio de Janeiro,SE Brazil)[J].Lithos,388/389:106077.
Ren Jishun,1990.On the geotectonics of south China[J].Acta Geologica Sinica,4(2):275-288.
Rudnick R L, Fountain D M,1995.Nature and compositon of the continental crust:A lower crustal perspective[J].Reviews of Geophysics,33(3):267-309.
Shand S J,1943.Eruptive Rocks[M].New York:John Wiley.
Shu L S, Faure M, Wang B,et al,2008.Late Palaeozoic-Early Mesozoic geological features of South China:Response to the Indosinian collision events in Southeast Asia[J].Com-ptes Rendus Geoscience,340(2/3):151-165.
Shu L S, Faure M, Yu J H,et al,2011.Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia[J].Precambrian Research,187(3/4):263-276.
Shu L S, Wang B, Cawood P A,et al,2015.Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block,South China[J].Tectonics,34(8):1600-1621.
Shu Liangshu,2012.An analysis of principal features of tectonic evolution in South China Block[J].Geological Bulletin of China,31(7):1035-1053.
Song M J, Shu L S, Santosh M,2017.Early Mesozoic intracontinental orogeny and stress transmission in South China:Evidence from Triassic peraluminous granites[J].Journal of the Geological Society,174(3):591-607.
Sun S S, Mcdonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society,Special Publications,42:313-345.
Sun Tao, Zhou Xinmin, Chen Peirong,et al,2003.The original model and tectonic setting for Mesozoic granites in Eastern Nanling Mountain range[J].Science in China,33(12):1209-1218.
Sylvester P J,1998.Post-collisional strongly peraluminous granites[J].Lithos,45:29-44.
Taylor S R, Mclennan S M,1985.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Publications.
Thornton C P, Tuttle O F,1960.Chemistry of igneous rocks,Part Ⅰ:Differentiation index[J].American Journal of Science,258:664-684.
Wang Denghong, Chen Yuchuan, Jiang Biao,et al,2020.Preliminary study on the Triassic continental mineralization system in China[J].Earth Science Frontiers,27(2):45-59.
Wang Dezi, Liu Changshi, Shen Weizhou,et al,1993.The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J].Acta Petrologica Sinica,9(1):44-54.
Wang Dezi, Zhou Jincheng,2005.New progress in studying the large igneous provinces[J].Geological Journal of China Universities,11(1):1-8.
Whalen J B, Currie K L, Chappell B W,1987.A-type granites:Geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,95:407-419.
Wu Fuyuan, Li Xianhua, Yang Jinhui,et al,2007.Discussions on the petrogenesis of granites[J].Acta Petrologica Sinica,23(6):1217-1238.
Wu Mingqian,2017.Minerallogy,Geochemistry,and Metallogeny of the Yichun and the Dajishan Deposits[D].Beijing:China University of Geosciences(Beijing).
Xie Guiqing, Mao Jingwen, Zhang Changqing,et al,2021.Triassic deposits in South China:Geological characteristics,ore forming mechanism and ore deposit model[J].Earth Science Frontiers,28(3):252-270.
Xu Xisheng, Deng Ping, Reilly S Y O,et al,2003.Single zircon LA-ICP-MS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance[J].Chinese Science Bulletin,48(12):1328-1334.
Yu Yang, Chen Zhenyu, Chen Zhenghui,et al,2012.Zircon U-Pb dating and mineralization prospective of the Triassic Qingxi pluton in Southern Jiangxi Province[J].Geotectonica et Metallogenia,36(3):413-421.
Zhang Di, Zhang Wenlan, Wang Rucheng,et al,2015.Quartz-vein type tungsten mineralization associated with the Indosinian(Triassic)Gaoling Granite,Miao’ershan Area,Nor-thern Guangxi[J].Geological Review,61(4):817-834.
Zhang G W, Guo A L, Wang Y J,et al,2013.Tectonics of South China continent and its implications[J].Science China Earth Sciences,56(11):1804-1828.
Zhang R Q, Lu J J, Wang R C,et al,2015.Constraints of in situ zircon and cassiterite U-Pb,molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area,Nanling Range,South China[J].Ore Geology Reviews,65:1021-1042.
Zhao Z, Zhao W W, Lu L,et al,2018.Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region,South China[J].Ore Geology Reviews,94:46-57.
Zhong Jiansheng, Shu Shunping, Yin Weiqing,et al,2010.Resource reserves verification report of the Baishi W-Cu deposit verification area,Ganxian,Jiangxi Province[R].Beijing:National Geological Archives.DOI:10.35080/n01.c.158039.
Zhou X M, Sun T, Shen W Z,et al,2006.Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J].Episodes,29(1):26-33.
Zhou Y, Liang X Q, Wu S C,et al,2015.Isotopic geochemistry,zircon U-Pb ages and Hf isotopes of A-type granites from the Xitian W-Sn deposit,SE China:Constraints on petrogenesis and tectonic significance[J].Journal of Asian Earth Sciences,105:122-139.
陈斌峰,邹新勇,彭琳琳,等,2019.清溪岩体稀土矿床地质特征及重稀土找矿潜力[J].稀土,40(4):20-31.
陈骏,陆建军,陈卫锋,等,2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.
陈骏,王汝成,朱金初,等,2013.南岭多时代花岗岩的钨锡成矿作用[J].中国科学:地球科学,44(1):111-121.
陈培荣,孔兴功,王银喜,等,1999.赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义[J].高校地质学报,5(4):378-383.
陈毓川,裴荣富,张宏良,等,1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社.
范尉茗,王岳军,郭锋,等,2003.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展[J].地学前缘,10(3):159-169.
丰成友,曾载淋,屈文俊,等,2015.赣南兴国县张家地钼钨矿床成岩成矿时代及地质意义[J].岩石学报,31(3):709-724.
丰成友,丰耀东,许建祥,等,2007.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据[J].中国地质,34(4):642-650.
郭春丽,郑佳浩,楼法生,等,2012.华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨[J].大地构造与成矿学,36(3):457-472.
华仁民,陈培荣,张文兰,等,2005.论华南地区中生代3次大规模成矿作用[J].矿床地质,24(2):99-107.
江西省地质局,1974.区域地质调查报告——兴国幅(1∶200000)[R].南昌:江西省地质局.
李光来,华仁民,韦星林,等,2011.江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义[J].地球科学(中国地质大学学报),36(2):282-288.
李献华,李武显,李正祥,2007.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,52(9):981-991.
梁华英,伍静,孙卫东,等,2011.华南印支成矿讨论[J].矿物学报,31(增1):53-54.
刘福来,许志琴,杨经绥,等,2004.中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别[J].岩石学报,20(1):9-26.
刘欢,赵希林,江涧,等,2021.华南中生代左行走滑活动探讨:以兴国旋卷构造为例[J].地质科学,56(3):808-828.
刘善宝,陈毓川,范世祥,等,2010.南岭成矿带中、东段的第二找矿空间——来自同位素年代学的证据[J].中国地质,37(4):1034-1049.
毛景文,周振华,丰成友,等,2012.初论中国三叠纪大规模成矿作用及其动力学背景[J].中国地质,39(6):1437-1471.
裴荣富,王永磊,李莉,等,2008.华南大花岗岩省及其与钨锡多金属区域成矿系列[J].中国钨业,23(1):10-13.
彭能立,王先辉,杨俊,等,2017.湖南川口三角潭钨矿床中辉钼矿Re-Os同位素定年及其地质意义[J].矿床地质,36(6):1402-1414.
任纪舜,1990.论中国南部的大地构造[J].地质学报,4(2):275-288.
舒良树,2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
孙涛,周新民,陈培荣,等,2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑),33(12):1209-1218.
王德滋,刘昌实,沈渭洲,等,1993.桐庐I型和相山S型两类碎斑熔岩对比[J].岩石学报,9(1):44-54.
王德滋,周金城,2005.大火成岩省研究新进展[J].高校地质学报,11(1):1-8.
王登红,陈毓川,江彪,等,2020.中国三叠纪大陆成矿体系[J].地学前缘,27(2):45-59.
吴福元,李献华,杨进辉,等,2007.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.
吴鸣谦,2017.江西宜春(四一四)和大吉山矿床的矿物学、地球化学及成矿作用研究[D].北京:中国地质大学(北京).
谢桂青,毛景文,张长青,等,2021.华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J].地学前缘,28(3):252-270.
徐夕生,邓平, Reilly S Y O,等,2003.华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义[J].科学通报,48(12):1328-1334.
于扬,陈振宇,陈郑辉,等,2012.赣南印支期清溪岩体的锆石U-Pb年代学研究及其含矿性评价[J].大地构造与成矿学,36(3):413-421.
张迪,张文兰,王汝成,等,2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用[J].地质论评,61(4):817-834.
钟建昇,舒顺平,尹维青,等,2010.江西省赣县白石山钨铜矿核查区资源储量核查报告[R].北京:全国地质资料馆.DOI:10.35080/n01.c.158039.
[1] Wenwei CUI,Huixia CHAO,Hujun HE,Xingke YANG,Junjie YANG,Haolei ZHU,Xu WU. Element Geochemical Characteristics and Significance of Ore,Wall Rock and Stratum in Fuwen Gold Deposit,Hainan [J]. Gold Science and Technology, 2023, 31(3): 423-432.
[2] Shengyun WEI,Jianguo WANG,Xuezhong GUO,Jia XING. Geochemical Characteristics and Geological Significance of Granite in Xiaridawu Niobium-Tantalum Mining Area,Northern Margin of Qaidam Basin [J]. Gold Science and Technology, 2023, 31(3): 408-422.
[3] Zhenliang CAO,Xuelong LIU,Shoukui LI,Sihan LIU,Fanglan LI,Bowen ZHOU. Comparison of Geochemical Characteristics Between Yanshanian Ore-bearing Granites in Northwest Yunnan and Global Adakites [J]. Gold Science and Technology, 2023, 31(1): 15-25.
[4] Yong ZHANG,Aikui ZHANG,Shuyue HE,Zhigang LIU,Yongle LIU,Peng ZHANG,Feifei SUN. Age,Petrogenesis and Tectonic Significance of Granodiorite in Kudeerte Gold Deposit,Qimantage Area,East Kunlun [J]. Gold Science and Technology, 2023, 31(1): 1-14.
[5] Jianguo WANG,Shizhen ZHANG,Jia XING,Zhinan WANG,Shengyun WEI,Jian HU. Geochemical Characteristics and Geological Significance of Ore-bearing Pegmatites in the Wulan Chakabeishan Area [J]. Gold Science and Technology, 2022, 30(6): 809-821.
[6] Jia XING,Jianguo WANG,Zhinan WANG,Jian HU,Shengyun WEI. Geochemical Composition and Genetic Analysis of Gabbro of Saibagou Gold Deposit,Qinghai Province [J]. Gold Science and Technology, 2022, 30(5): 664-675.
[7] Yupeng ZHANG,Dongyan SHI,Mingqi LV,Chenglu LI,Kun ZHANG,Wei TANG. Application Effect of Rock Debris Geochemical Survey in Prospecting in Sandaowanzi Shallow Overburden Area,Heilongjiang Province [J]. Gold Science and Technology, 2022, 30(5): 651-663.
[8] Hongke FAN,Genming GUO,Bobo DONG,Kai ZHANG,Yuxin LIU. Characteristics of Rock Geochemical Anomalies and Its Prospecting Effect of the Songshudaban Gold Deposit in Yanqi County,Xinjiang [J]. Gold Science and Technology, 2021, 29(4): 477-488.
[9] Songtao LI,Jianzhong LIU,Yong XIA,Zhuojun XIE,Qinping TAN,Zepeng WANG,Guanghong ZHOU,Chengfu YANG,Minghua MENG,Lijin TAN,Xiaoyong WANG,Junhai LI,Liangyi XU,Dafu WANG. Tectono-geochemistry Weak Mineralization Information Extraction Method and Its Application in the Carlin-type Gold Accumulation Area of South-western Guizhou [J]. Gold Science and Technology, 2021, 29(1): 53-63.
[10] Peijiao JU. Tectono-Geochemical Characteristics of Liyuan Gold Mine in the North Section of Taihang Mountain [J]. Gold Science and Technology, 2021, 29(1): 64-73.
[11] Qichao DUAN, Xucheng PANG, Rui ZONG, Di HAN, Yan ZHANG, Xin ZHANG. Primary Halo Characteristics and Geological Significance of the Dongjianian Silver Deposit in Lingbao City,Henan Province [J]. Gold Science and Technology, 2020, 28(4): 497-508.
[12] Ying LUO,Yingxiang LU,Xuelong LIU,Shunrong XUE,Shuaishuai WANG,Zhenhuan LI,Changzhen ZHANG,Jianhang CHEN. Geochemical Characteristics,Zircon U-Pb Age and Geochronological Significance of Diabase in Heiniu’ao Gold Deposit,Baoshan Block,Western Yunnan [J]. Gold Science and Technology, 2020, 28(1): 1-11.
[13] Ouxiang WEI, Dayu ZHANG, Jinsong LIU, Xuefeng CHEN, Longxiang YE, Hua JIANG, Xiang QIAN, Taofa ZHOU. Geochronology and Genesis of Taxia Granodiorite Intrusion in the Northwest Jiangnan Proterozoic Terrane [J]. Gold Science and Technology, 2018, 26(6): 689-705.
[14] Peijiao JU. Geological Characteristics and Ore-controlling Factors of Liyuan Gold Deposit, Shanxi Province [J]. Gold Science and Technology, 2018, 26(6): 706-717.
[15] Jing CHEN,Jichun HU,Yongzhuo LU,Shiying LU,Shulin WANG,Beibei XU. Geochronology,Geochemical Characteristics of Molybdenum Ore-bearing Syenogranite from Xiaozhaohuo Area in East Kunlun and Its Geological Significance [J]. Gold Science and Technology, 2018, 26(4): 465-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!