img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (4): 624-634.doi: 10.11872/j.issn.1005-2518.2023.04.026

• Mining Technology and Mine Management • Previous Articles     Next Articles

PPV Prediction Model Based on Random Forest Optimized by SMA Algorithm

Hongwei DENG(),Liang LUO   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2023-02-20 Revised:2023-04-19 Online:2023-08-30 Published:2023-09-20

Abstract:

The vibration caused by blasting is likely to cause instability and failure of facilities such as underground roadways,high and steep slopes in mining areas or ground buildings under dynamic action.Therefore,it is particularly important to predict the intensity of blasting vibration.The accurate prediction of peak particle velocity(PPV) is the premise of effectively controlling the vibration hazard of blasting engineering,but the current empirical formula for predicting the peak particle velocity is not accurate enough.Machine learning has obvious advantages in solving the problem of nonlinear relationship.In order to improve the prediction accuracy of the PPV prediction model,this study proposes to optimize the number of trees and the minimum number of leaf points in the random forest (RF)by slime mould algorithm (SMA) ,which overcomes the inability to obtain the optimal hyperparameters by using a single RF algorithm.Based on a dataset of 23 samples with four input parameters (minimum resistance line-r,height difference-H,maximum segment dose-Qmax,horizontal distance-W) and one output parameter(PPV) collected in an open-pit blasting engineering example,the combination of four parameters of these four parameters (Qmax-H-W-r、Qmax-H-r、Qmax-W-r、Qmax-r) was used as the input parameters in the RF algorithm,and then MAERMSEMEDEA and R2 evaluate the prediction effect of the SMA-RF model for four different input parameters to determine the optimal combination of parameters.In this model,the fitness function in SMA is defined as the root mean square error of the predicted value to enhance the robustness of the RF model.Then,the performance of SMA-RF model and unoptimized RF model and six empirical formulas commonly used in China and abroad were compared.The results show that the SMA-RF model has better prediction accuracy than the RF model,and the SMA-RF model has significantly better prediction effect than the six empirical formulas.In addition,Qmax-H-W-r can train the optimal SMA-RF model in the combination of four parameters,so it is recommended to be used to predict PPV in engineering practice.

Key words: open blasting, blasting vibration velocity peak, random forest algorithm, slime mould algorithm, prediction accuracy

CLC Number: 

  • TD253

Fig.1

Schematic diagram of random forest"

Table 1

Hyper-parameters optimized in random forest algotithm"

超参数含义范围
ntree树的个数0~300
mtry最小叶子点数0~20

Fig.2

SMA-RF model flow chart"

Table 2

Measured data of blasting vibration"

序号Qmax/kgr/mH/mW/m实测值/(cm·s-1
1580.820005.00.763581
2600.8310756.00.489885
3300.82821505.00.007130
4260.860155.01.893658
5280.84682394.50.692248
??????
23260.8110155.01.191707

Fig.3

Distributions of training set and testing set for SMA-RF model"

Fig.4

Iteration situation of fitness value in SMA-RF prediction model"

Fig.5

Predicted PPV for training and testing sets by SMA-RF prediction models"

Table 3

Result evaluation of SMA-RF prediction model with different input parameters"

参数组合训练集总分
MAE得分R2得分RMSE得分MEDEA得分
Q-r1.389310.929011.929910.947214
Q-H-r0.876740.969441.250340.5444416
Q-W-r1.246420.956421.497021.105528
Q-W-H-r1.045630.963731.358230.7775312
参数组合测试集总分
MAE得分R2得分RMSE得分MEDEA得分
Q-r1.618330.996242.023041.2771213
Q-H-r1.694210.917612.155221.732415
Q-W-r1.650620.980132.221011.124539
Q-W-H-r1.395840.963622.070230.7131413

Table 4

Comparison of SMA-RF prediction model scores with different input parameters"

参数组合训练集得分测试集得分总分排名
Q-r413173
Q-H-r165212
Q-W-r89173
Q-W-H-r1213251

Table 5

Evaluation of RF prediction model results"

评价指标训练集测试集
MAE1.46051.6951
R20.96750.9045
RMSE2.02012.1923
MEDEA1.06561.6955

Table 6

Six groups of common empirical formulas at home and abroad"

经验方法公式
Amb-HendPPV=Kr/Qmax1/3-B
CMRIPPV=n+Kr/Qmax1/2-1
GeneralPPV=KQmaxAr-B
Indian StandardPPV=Kr/Qmax2/3B
Lang-KihlPPV=K(Qmax/r3/4)B
USBMPPV=Kr/Qmax1/2-B

Table 7

Constant terms and fitting evaluation indexes of six groups of empirical formulas"

经验公式参数评价指标
KBAnMAER2RMSEMEDEA
USBM13.10270.7479--3.09440.01955.68261.6959
Lang-Kihl0.28671.9959--2.80630.10314.33411.4054
General9.3569e-50.53922.1427-2.29200.26493.78870.1357
Amb-Hend24.93670.6897--3.17930.00794.56761.8497
Indian Standard6.10200.7806--3.02190.03414.55701.7112
CMRIP12.9205--1.13303.15710.00944.58261.6516

Fig.6

PPV prediction of six groups of empirical formulas"

Fig.7

Average MSE decrease of four input parameters"

Breiman L,2001.Random forests[J].Machine Learning,45(1):5-32.
Chen Yibing, Li Tianyi, Li Xinyan,et al,2022.Research on the relationship between typhoon precipitation cloud spectrum and precipitation based on random forest and remote sensing[J].Remote Sensing Technology and Application,37(5):1277-1288.
Davies B, Farmer I W, Attewell P B,1964.Ground vibration from shallow sub-surface blasts[J].Engineer,217:553-559.
Fan Yong, Pei Yong, Yang Guangdong,et al,2022.Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J].Journal of Vibration and Shock,41(16):194-203,302.
Guo Qinpeng, Yang Shijiao, Zhu Zhonghua,et al,2020.Predition of blasting vibration velocity using GA-BP neural network[J].Blasting,37(3):148-152.
Guo H, Zhou J, Koopialipoor M,et al,2021.Deep neural network and whale optimization algorithm to assess flyrock induced by blasting[J].Engineering with Computers,37:173-186 .
Hu X, Qu S,2018.A new approach for predicting bench blasting-induced ground vibrations:A case study[J].Journal of the Southern African Institute of Mining and Metallurgy,118(5):531-538.
Jiang Nan, Zhou Chuanbo, Ping Wen,et al,2014.Altitude effect of blasting vibration velocity in rock slopes[J].Journal of Central South University(Science and Technology),45(1):237-243.
Lee S L A, Kouzani A Z, Hu E J,2010.Random forest based lung nodule classification aided by clustering[J].Computerized Medical Imaging and Graphics,34(7):535-542.
Li S, Chen H, Wang M,et al,2020.Slime mould algorithm:A new method for stochastic optimization[J].Future Generation Computer Systems,111:300-323.
Li Xiaohan, Liu Kewei, Yang Jiacai,et al,2019.Analysis of blasting vibration effects under different ground stress[J].Gold Science and Technology,27(2):241-248.
Lin H P, Ahmadianfar I, Amiri Golilarz N,et al,2022.Adaptive slime mould algorithm for optimal design of photovoltaic models[J].Energy Science and Engineering,10(7):2035-2064.
Liu Qiang, Li Xibing, Liang Weizhang,2018.PCA-RF model for the classification of rock mass quality and its application[J].Gold Science and Technology,26(1):49-55.
Luo Xiaofeng, Qiu Wei, Huang Wenlong,et al,2020. Correction of blasting vibration propagation attenuation formula under complex terrain based on dimensional theory[C]// Engineering Construction Collection of Pumped Storage Power Station.Beijing:China Water Resources and Hydropower Publishing House.
Roy P P,1993.Putting ground vibration predictions into practice[J].Colliery Guardian,241(2):63-67.
Siskind D E, Stagg M S, Kopp J W,et al,1980.Structure response and damage produced by ground vibration from surface mine blasting[R]. Washington:United States,Bureau of Mines.
Tan Wenhui, Qu Shijie, Mao Shilong,et al,2010.Altitude effect of blasting vibration in slopes[J]. Chinese Journal of Geotechnical Engineering,32(4):619-623.
Yang Lianbing, Chen Chunbo, Zheng Hongwei,et al,2021.Retrieval of soil salinity content based on random forests regression optimized by Bayesian optimization algorithm and gentic algorithm[J].Journal of Geo-information Science,23(9):1662-1674.
Yang Youfa, Cui Bo,2009.Prediction of peak blasting velocity[J].Journal of Vibration and Shock,28(10):195-198,234-235.
Zhang P, Yin Z Y, Jin Y F,et al,2020.A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J].Engineering Geology,265:105328.
Zhang Yan, Wang Pengpeng,2022.Blasting vibration velocity prediction model based on RVM[J].Blasting,39(1):168-174.
Zhao Huabing, Long Yuan, Song Kejian,et al,2012.Predictive methods and influence factors of blasting vibration velocity[J].Engineering Blasting,18(1):24-27.
Zhou You, Chen Zuobin, Wang Jing,et al,2016.Effects of minimum burden on deep-hole rock blasting block size[J]. Engineering Blasting,22(6):70-74.
陈绎冰,李天依,李欣艳,等,2022.基于随机森林和遥感的台风降水云光谱与降水关系研究[J].遥感技术与应用,37(5):1277-1288.
范勇,裴勇,杨广栋,等,2022.基于改进PSO-BP神经网络的爆破振动速度峰值预测[J].振动与冲击,41(16):194-203,302.
郭钦鹏,杨仕教,朱忠华,等,2020.运用GA-BP神经网络对爆破振动速度预测[J].爆破,37(3):148-152.
蒋楠,周传波,平雯,等,2014.岩质边坡爆破振动速度高程效应[J].中南大学学报(自然科学版),45(1):237-243.
李萧翰,刘科伟,杨家彩,等,2019.不同地应力下爆破振动效应分析[J].黄金科学技术,27(2):241-248.
刘强,李夕兵,梁伟章,2018.岩体质量分类的PCA-RF模型及应用[J].黄金科学技术,26(1):49-55.
骆晓锋,邱伟,黄文龙,等,2020.基于量纲理论的复杂地形下爆破振动传播衰减公式修正[C]//抽水蓄能电站工程建设文集.北京:中国水利水电出版社.
谭文辉,璩世杰,毛市龙,等,2010.边坡爆破振动高程效应分析[J].岩土工程学报,32(4):619-623.
杨练兵,陈春波,郑宏伟,等,2021.基于优化随机森林回归模型的土壤盐渍化反演[J].地球信息科学学报,23(9):1662-1674.
杨佑发,崔波,2009.爆破振动速度峰值的预测[J].振动与冲击,28(10):195-198,234-235.
张研,王鹏鹏,2022.基于RVM的爆破振动速度预测模型[J].爆破,39(1):168-174.
赵华兵,龙源,宋克健,等,2012.爆破振动速度预测方法及其影响因素[J].工程爆破,18(1):24-27.
周游,陈作彬,王静,等,2016.最小抵抗线对深孔岩石爆破块度的影响[J].工程爆破,22(6):70-74.
[1] Raoqing XIE, Jianhong CHEN, Wenfeng XIAO. Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network [J]. Gold Science and Technology, 2022, 30(2): 272-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[2] HUANG Jun, WU Jiafu, LU RuKuai , XIA Liyuan. [J]. J4, 2010, 18(4): 1 -5 .
[3] ZHANG Huaquan,ZHANG Weixin,LI Hongjie. Ore—-formation Conditions and Exploration Orientation of the Gold Deposite in Jiaolai Basin,Shandong Province[J]. J4, 2008, 16(2): 12 -17 .
[4] ZHAO Wenchuan ,PENG Suxia,LI Tao. Mode of Occurrence of the Vein and Foreground of Deep Ore Prospecting of Zhaishang Gold M ining Area[J]. J4, 2008, 16(2): 1 -4 .
[5] YANG Bao-Rong, YANG Xiao-Bin. Geological Characteristics and Ore-Controlling Factors of the Guoluolongwa Gold deposit,Doulan County,Qinghai Province[J]. J4, 2007, 15(1): 26 -30 .
[6] ZHANG Guogang. The Geological Characteristics,Prospecting Criteria and Direction of City Qixia in Shandong[J]. J4, 2008, 16(4): 54 -57 .
[7] MA Dexi ,FAN Junjie ,YU Aijun ,WANG Zhihua ,ZHANG feng. Application Study of High——density Electrical Prospecting Long Section M ethod[J]. J4, 2008, 16(2): 48 -56 .
[8] ZHANG Kai, GAO Chunguo, WANG Junli, LU Xintao. The Harm and TreatmentMethods of Harmon ic in the Runn ing Process of Inverter[J]. J4, 2008, 16(6): 58 -59 .
[9] ZHANG Yan, SHANG Qian. Research Progress of Gold Deposits of Ductile Shear Zone——Taking Ailaoshan Gold Zone as an Example[J]. J4, 2011, 19(1): 11 -15 .
[10] YANG Xiao-Bin, LI Yong-Na, YE Yu-Juan. STUDY  ON  ORE  AND  MINERAL  FEATURES   IN  THE  GUOLUOLONGWA   GOLD   DEPOSIT OF   QINGHAI   PROVINCE[J]. J4, 2007, 15(1): 14 -18 .