img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (3): 406-416.doi: 10.11872/j.issn.1005-2518.2019.03.406

• 采选技术与矿山管理 • 上一篇    

滨海矿山矿坑涌水源识别与混合比研究

段学良1,2,3(),马凤山1,2(),赵海军1,2,郭捷1,2,顾鸿宇1,2,3,刘帅奇1,2,3   

  1. 1. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2. 中国科学院地球科学研究院,北京 100029
    3. 中国科学院大学,北京 100049
  • 收稿日期:2018-07-31 修回日期:2018-09-15 出版日期:2019-06-30 发布日期:2019-07-09
  • 通讯作者: 马凤山 E-mail:13051876966@163.com;fsma@mail.iggcas.ac.cn
  • 作者简介:段学良(1994-),男,河北泊头人,博士研究生,从事矿山水文地质与工程地质研究工作。13051876966@163.com
  • 基金资助:
    国家重点研发计划专题“黄渤海不同类型海岸带海水入侵发生机理研究”(编号:2016YFC0402802)和国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293)

Study on Water Sources Identification and Mixing Ratios of Mine Water

Xueliang DUAN1,2,3(),Fengshan MA1,2(),Haijun ZHAO1,2,Jie GUO1,2,Hongyu GU1,2,3,Shuaiqi LIU1,2,3   

  1. 1. Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2. Institutions of Earth Science,Chinese Academy of Sciences,Beijing 100029,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2018-07-31 Revised:2018-09-15 Online:2019-06-30 Published:2019-07-09
  • Contact: Fengshan MA E-mail:13051876966@163.com;fsma@mail.iggcas.ac.cn

摘要:

通过水化学和同位素分析,并利用主成分分析法(PCA)确定了三山岛金矿西山矿区井下巷道的涌水来源为海水、375-20(Mg)、淡水和320-7(Ca),其中375-20和320-7均为基岩水,但其水化学特征明显不同,前者是富Mg型基岩水,而后者是富Ca型基岩水。据此建立了巷道涌水的混合模型,在此基础上结合极大似然法计算得到巷道涌水混合比,分析其演化规律。研究表明:该方法能够有效识别涌水来源,并计算水样混合比;海水在各端元中占比最大,是混合水的主要成分,各期水样海水比例在50%左右波动;海水比例较高的中段为-510 m中段,在此中段处于1660和2230勘探线之间的水点,各期海水比例大于50%,尤其是510-2水样点,海水比例最高达到77%;淡水主要影响范围是-465 m及以上中段;F3断裂带受采动影响较大,其周围的水样点海水比例波动大,需加强对该断裂带的监测。

关键词: 水化学同位素分析, 主成分分析(PCA), 涌水源, 混合比, 三山岛金矿

Abstract:

Sanshandao gold mine is located in the Laizhou Bay, eastern China.Its north and west sides are bordering the Bohai sea, only the southeast side is connected to the land.The mining operations are below the sea level, so the sea water is the potential threat to the mine.In order to predict and prevent water inrush disaster, it is important to identify the mine water source and determine the mixing ratios.In view of the identification of water source in mine tunnel, domestic and foreign scholars have done a lot of research.At present, the methods of mine water source identification are neuron network method, based on entropy weight-fuzzy variable set theory, clustering analysis, distance discriminant analysis and Fisher discriminant method.These methods can make a good distinction for water with simple composition, and are only qualitative identification for the composition of the complex water source, and there is no quantitative determination of mixing ratios of the mine water.Based on hydrogeochemical and isotopic analysis, the method of principal component analysis (PCA) was used to identify the mine water sources (seawater, 375-20 Mg, freshwater and 320-7 Ca) of Sanshandao gold mine and established the mixing model of mine water.The 375-20 (Mg) and 320-7 (Ca) are both brine but have different hydrochemical characteristics.The 375-20 is rich in Mg and the 320-7 is rich in Ca.The first, the second and the third components of the PCA method explained 88% of the information of the water samples, so the water sample can be represented by these three principal components.The end-members mixing ratios were calculated by the maximum likelihood method and the evolution rules of mine water were analyzed according to the calculation results.Unlike the traditional method, the maximum likelihood method holds that the end-member concentration is not a fixed value, but a change in time and space, and the influence of mining on the end-member can be effectively reflected by this method.The research shows that the method can effectively identify the water sources and calculated the mixing ratios.The seawater is the main component of mixed water and for the entire mine the proportion of the seawater fluctuated around 50% every year, the proportion of 375-20(Mg) and freshwater fluctuated around 20% and the 320-7(Ca) flucated around 10%. At -510 m sublevel, the mine water has a high proportion of seawater. At most of the water sites which are located between the prospecting lines 1660 and 2230,the proportion of seawater are more than 50%, especially at 510-2, the highest proportion is 77%. The main range affected by fresh water is 465 m sublevel and above. F3 fault is greatly affected by the mining, and the proportion of seawater of sites around which fluctuate greatly, so the monitoring of F3 fault needs to be strengthened.

Key words: hydro-chemical and isotope analysis, principal component analysis (PCA), mine water source, mixing ratios, Sanshandao gold mine

中图分类号: 

  • TD742

图1

研究区及断层、裂隙位置分布图"

图2

采样点位置分布图"

表1

水样各离子及同位素等指标浓度分析结果"

分析项目 样品数/个 最大值 最小值 平均值 标准差
δ 18O 166 -1.05 -5.60 -2.17 0.84
δD 166 -2.83 -43.25 -17.87 7.47
K+ 166 370.00 35.50 234.02 58.48
Na+ 166 20 000.00 6 225.00 10 642.68 2 001.47
Ca2+ 166 5 090.20 424.80 1 208.63 674.82
Mg2+ 166 3 030.20 194.40 1 195.90 372.70
Cl- 166 40 196.80 12 028.20 20 427.46 4 325.73
SO4 2- 166 3 842.40 1 306.40 2 435.44 387.91
pH 166 7.81 4.57 7.24 0.41
EC 166 64 700.00 28 700.00 43 052.41 6 400.57
TH 166 17 764.20 4 833.90 7 913.88 2 240.06
TDS 166 69 666.10 22 020.10 36 333.21 7 176.00

图3

水样δ 18O 和δD关系图"

表2

主成分分析主要计算结果"

项目 第一主成分 第二主成分 第三主成分
特征值 6.030 2.440 1.165
贡献率/% 54.82 22.18 10.59
累计贡献率/% 54.82 77.00 87.59
δ 18O 0.041 0.923 0.185
δD -0.029 0.790 0.259
K+ 0.061 0.777 -0.501
Na+ 0.888 0.165 0.354
Ca2+ 0.827 -0.367 -0.315
Mg2+ 0.420 0.134 0.813
Cl- 0.940 0.049 0.312
SO4 2- 0.503 0.249 0.623
EC 0.910 0.171 0.130
TH 0.890 -0.177 0.334
TDS 0.933 0.071 0.334

图4

所有水样的主成分相关关系图"

表3

目标函数值计算结果"

年份 目标函数值 年份 目标函数值
2009 -0.00081 2013 -0.00024
2011 -0.00009 2014 -0.00019
2012 -0.00028 2015 -0.01955

表4

所有水样的混合比计算结果"

点号 海水 375-20 Mg 淡水 320-7 Ca 点号 海水 375-20 Mg 淡水 320-7 Ca
105-1a 0.46 0.18 0.26 0.11 510-4b 0.64 0.16 0.21 0.00
105-1b 0.51 0.12 0.34 0.03 510-5a 0.58 0.18 0.20 0.04
150-1a 0.28 0.14 0.49 0.09 510-6a 0.59 0.15 0.21 0.05
150-1b 0.35 0.14 0.51 0.00 510-6b 0.67 0.13 0.19 0.01
150-1c 0.32 0.12 0.52 0.04 510-7a 0.32 0.44 0.13 0.11
150-1d 0.29 0.06 0.10 0.55 510-8c 0.68 0.07 0.19 0.07
195-1a 0.53 0.00 0.24 0.23 510-9d 0.59 0.19 0.22 0.00
195-1b 0.52 0.11 0.27 0.10 510-10d 0.59 0.16 0.25 0.01
195-1c 0.45 0.10 0.30 0.16 510-11f 0.14 0.70 0.14 0.02
195-1d 0.50 0.11 0.29 0.11 510-12f 0.31 0.44 0.26 0.00
240-1a 0.48 0.32 0.14 0.05 510-13f 0.38 0.40 0.22 0.00
240-2a 0.54 0.26 0.17 0.03 510-15f 0.39 0.39 0.22 0.00
240-3a 0.29 0.50 0.07 0.15 510-16f 0.31 0.47 0.22 0.01
240-4a 0.55 0.26 0.19 0.00 510-16kf 0.43 0.36 0.21 0.00
240-5a 0.60 0.00 0.34 0.06 555-1a 0.65 0.06 0.17 0.13
285-1a 0.24 0.37 0.25 0.14 555-1c 0.64 0.14 0.17 0.05
285-1b 0.39 0.21 0.22 0.18 555-1d 0.16 0.11 0.28 0.45
285-1c 0.40 0.16 0.20 0.23 555-2a 0.37 0.42 0.00 0.21
285-1d 0.28 0.20 0.30 0.23 555-3a 0.56 0.16 0.21 0.08
285-2a 0.56 0.15 0.20 0.09 555-3b 0.56 0.19 0.21 0.04
285-2b 0.65 0.13 0.19 0.04 555-3c 0.34 0.24 0.20 0.22
285-2d 0.38 0.07 0.22 0.34 555-3d 0.37 0.09 0.22 0.32
285-3a 0.00 0.30 0.45 0.25 555-4a 0.54 0.23 0.18 0.04
285-3b 0.02 0.25 0.48 0.25 555-4b 0.66 0.16 0.18 0.00
285-3c 0.06 0.17 0.44 0.34 555-4c 0.63 0.16 0.20 0.02
285-3d 0.07 0.32 0.37 0.24 555-4d 0.62 0.15 0.23 0.00
320-8e 0.15 0.67 0.02 0.15 555-5a 0.53 0.23 0.19 0.05
320-9e 0.26 0.58 0.06 0.11 555-5b 0.41 0.39 0.13 0.06
330-1a 0.44 0.13 0.14 0.29 555-5c 0.50 0.18 0.14 0.18
330-1b 0.43 0.11 0.14 0.31 555-6a 0.37 0.39 0.12 0.12
330-2a 0.60 0.07 0.18 0.15 555-6b 0.45 0.40 0.12 0.04
375-1a 0.52 0.28 0.18 0.03 555-7b 0.73 0.07 0.16 0.04
375-1b 0.54 0.23 0.22 0.01 600-1a 0.35 0.39 0.13 0.12
375-1c 0.52 0.24 0.20 0.03 600-1b 0.42 0.36 0.18 0.04
375-1e 0.57 0.23 0.20 0.00 600-1c 0.49 0.34 0.15 0.03
375-2a 0.57 0.24 0.14 0.05 600-1d 0.52 0.20 0.22 0.07
375-3a 0.64 0.15 0.16 0.05 600-1e 0.28 0.24 0.20 0.28
375-3b 0.69 0.07 0.21 0.03 600-2a 0.39 0.38 0.13 0.10
375-3d 0.60 0.13 0.21 0.06 600-2b 0.48 0.38 0.14 0.00
375-4a 0.63 0.12 0.16 0.10 600-2c 0.46 0.39 0.15 0.01
375-4b 0.61 0.09 0.20 0.10 600-2d 0.58 0.17 0.21 0.05
375-4c 0.60 0.10 0.15 0.14 600-3a 0.30 0.49 0.09 0.12
375-4d 0.55 0.09 0.19 0.17 600-3b 0.38 0.45 0.12 0.05
375-4e 0.60 0.08 0.15 0.17 600-3c 0.43 0.39 0.13 0.05
375-5a 0.35 0.26 0.20 0.19 600-4b 0.48 0.36 0.14 0.03
375-5b 0.40 0.23 0.22 0.16 600-4c 0.45 0.40 0.10 0.06
375-5c 0.33 0.25 0.25 0.17 600-5b 0.33 0.45 0.14 0.08
375-5d 0.30 0.23 0.26 0.22 600-5c 0.41 0.35 0.17 0.06
375-5e 0.42 0.07 0.17 0.33 600-5d 0.31 0.43 0.21 0.05
375-6a 0.42 0.11 0.12 0.36 600-6c 0.56 0.23 0.15 0.06
375-6b 0.37 0.13 0.17 0.34 600-6d 0.12 0.46 0.24 0.18
375-6f 0.55 0.20 0.24 0.00 600-6e 0.60 0.17 0.20 0.04
375-7a 0.40 0.16 0.17 0.27 600-7c 0.47 0.37 0.15 0.02
375-7e 0.66 0.14 0.17 0.03 600-8c 0.42 0.43 0.12 0.04
375-7f 0.57 0.23 0.19 0.01 600-8d 0.45 0.33 0.22 0.00
375-8a 0.52 0.13 0.18 0.17 600-9c 0.43 0.42 0.12 0.03
375-8b 0.46 0.03 0.13 0.37 600-9d 0.35 0.47 0.18 0.00
375-8e 0.57 0.32 0.10 0.01 600-10d 0.71 0.09 0.18 0.02
375-8f 0.57 0.39 0.00 0.04 600-11e 0.00 0.37 0.12 0.52
375-9e 0.62 0.23 0.15 0.00 600-12e 0.22 0.38 0.16 0.24
375-9f 0.59 0.19 0.22 0.00 600-13e 0.46 0.28 0.17 0.10
375-10f 0.53 0.25 0.20 0.02 600-14e 0.54 0.19 0.20 0.07
375-11f 0.33 0.57 0.10 0.00 600-15e 0.65 0.15 0.19 0.01
375-12f 0.31 0.55 0.13 0.01 600-16e 0.64 0.12 0.21 0.03
375-13f 0.20 0.68 0.11 0.02 600-17e 0.65 0.08 0.21 0.06
420-1a 0.44 0.18 0.24 0.13 600-17f 0.42 0.15 0.25 0.18
420-1c 0.49 0.20 0.20 0.10 600-18e 0.69 0.08 0.20 0.04
420-2a 0.41 0.26 0.16 0.17 600-18f 0.55 0.19 0.25 0.01
465-1a 0.47 0.26 0.12 0.15 600-19e 0.70 0.08 0.20 0.03
465-1b 0.38 0.18 0.19 0.25 600-20f 0.53 0.24 0.19 0.04
465-1c 0.45 0.00 0.33 0.22 600-21f 0.38 0.15 0.22 0.24
465-2a 0.34 0.13 0.17 0.36 600-22f 0.58 0.18 0.24 0.01
465-2c 0.30 0.12 0.23 0.35 600-23f 0.59 0.17 0.24 0.01
510-1a 0.65 0.15 0.10 0.10 645-1f 0.31 0.46 0.23 0.01
510-1b 0.71 0.08 0.18 0.04 645-2f 0.25 0.41 0.29 0.06
510-1c 0.59 0.24 0.17 0.00 645-3f 0.32 0.44 0.23 0.01
510-2a 0.70 0.09 0.11 0.10 645-4f 0.32 0.47 0.19 0.03
510-2b 0.77 0.07 0.15 0.02 690-1f 0.23 0.54 0.22 0.01
510-2c 0.64 0.09 0.21 0.06 690-1kf 0.29 0.37 0.34 0.00
510-3a 0.62 0.15 0.15 0.09 690-2c 0.48 0.42 0.11 0.00
510-3b 0.63 0.15 0.19 0.04 690-2f 0.31 0.43 0.26 0.00
510-4a 0.60 0.15 0.14 0.11 690-2kf 0.32 0.44 0.23 0.01

图5

每期水样所有水点混合比平均值"

1 阿淑芳,刘宁宁,余生晨,等 . 基于免疫算法改进的反向传播神经元网络矿井水害水源识别研究[J]. 华北科技学院学报, 2017,14(1):34-39.
Shufang E , Liu Ningning , Yu Shengchen , et al . Research on relative technologies of automatic recognition of water sources based on back propagation neural network improved by immune algorithm[J]. Journal of North China Institute of Science and Technology,2017, 14(1):34-39.
2 王心义,赵伟,刘小满,等 . 基于熵权—模糊可变集理论的煤矿井突水水源识别[J].煤炭学报,2017,42(9):2433-2439.
Wang Xinyi , Zhao Wei , Liu Xiaoman ,et al .Identification of water inrush source from coalfield based on entropy weight-fuzzy variable set theory[J].Journal of China Coal Society,2017,42(9):2433-2439.
3 姚洁,童敏明,刘涛,等 . 基于聚类分析方法的矿井水源识别[J]. 煤矿安全,2013,44(2):29-31,35.
Yao Jie , Tong Minming , Liu Tao ,et al . Mine water source identification based on cluster analysis method[J]. Safety in Coal Mines, 2013,44(2):29-31,35.
4 宫凤强,鲁金涛 . 基于主成分分析与距离判别分析法的突水水源识别方法[J]. 采矿与安全工程学报,2014,31(2):236-242.
Gong Fengqiang , Lu Jintao . Recognition method of mine water inrush sources based on the principal element analysis and distance discrimination analysis[J].Journal of Mining and Safety Engineering,2014,31(2):236-242.
5 陈红江,李夕兵,刘爱华,等 . 用Fisher判别法确定矿井突水水源[J].中南大学学报(自然科学版),2009,40(4):1114-1120.
Chen Hongjiang , Li Xibing , Liu Aihua ,et al . Identifying of mine water inrush sources by Fisher discriminant analysis method[J]. Journal of Central South University( Science and Technology), 2009,40( 4) :1114 -1120.
6 黄平华,陈建生 . 基于多元统计分析的矿井突水水源Fisher识别及混合模型[J].煤炭学报,2011,36(增1):131-136.
Huang Pinghua , Chen Jiansheng .Fisher indentify and mixing model based on multivariate statistical analysis of mine water inrush sources[J]. Journal of China Coal Society,2011,36(Supp.1):131-136.
7 刘爱华,刘银朋,程力 . 三元混合模型在地下矿山涌水水源计算分析中的应用[J]. 中南大学学报(自然科学版), 2014,45(8):2768-2773.
Liu Aihua , Liu Yinpeng , Cheng Li . Application of ternary mixture model in discrimination of underground mine water in rush[J]. Journal of Central South University (Science and Technology),2014,45(8):2768-2773.
8 Ma F S , Zhao H J , Guo J . Investigating the characteristics of mine water in a subsea mine using groundwater geochemistry and stable isotopes[J].Environmental Earth Sciences,2015,74(9):6703-6715.
9 郭捷,马凤山,赵海军,等 . 三山岛海底金矿突涌水优势渗流通道与来源研究[J]. 工程地质学报,2015,23(4):784-789.
Guo Jie , Ma Fengshan , Zhao Haijun ,et al .Preferred seepage channels and source of water inrush in seabed gold mine at Sanshandao[J].Journal of Engineering Geology,2015,23(4):784-789.
10 Gu H Y , Ma F S , Guo J , et al . Hydrochemistry, multidimensional statistics, and rock mechanics investigations for Sanshandao gold mine, China[J]. Arabian Journal of Geosciences,2017,10(3):62.
11 Gu H Y , Ma F S , Guo J ,et al . A spatial mixing model to assess groundwater dynamics affected by mining in a coastal fractured aquifer, China[J]. Mine Water and the Environment,2018,37:2)405-420.
12 Laaksoharju M , Skarman C , Skarman E .Multivariate mixing and mass balance ( M3 )calculations, a new tool for decoding hydrogeochemical information[J]. Applied Geochemistry, 1999,14: 861-871.
13 Gu H Y , Ma F S , Guo J , et al . Assessment of water sources and mixing of groundwater in a coastal mine: The Sanshandao gold mine, China[J]. Mine Water and the Environment,2017(3):1-15.
14 谭绿贵,张广胜,汪万芬,等 . 刍论矿床水文地质学研究的基本问题——兼谈霍邱铁矿开展水文地质研究的必要性[J]. 皖西学院学报,2010,26(5):83-87.
Tan Lügui , Zhang Guangsheng , Wang Wanfen ,et al . Preliminary studies on the basical issues of the deposit hydrogeology:Concurrently discussing the necessity of hydrogeological study at Huoqiu iron ore[J]. Journal of West Anhui University,2010,26(5):83-87.
15 Carrera J , Vazquez-Sune E , Castillo O ,et al . A methodology to compute mixing ratios with uncertain end-members[J]. Water Resources Research, 2004,41(12):W12101.
16 叶柏龙,彭恩生 . 三山岛金矿导水构造模式研究[J]. 中南矿冶学院学报,1994 ,25(2):146-150.
Ye Bolong , Peng Ensheng . Study on the conducting-water structure model in the Sanshandao gold deposit[J]. Journal of Central South Institute of Mining and Metallurgy, 1994,25(2):146-150.
17 王善飞 . 三山岛金矿深部开采水文地质浅析[J]. 有色矿山,2001,30 (3):9-12.
Wang Shanfei . Analysis of hydrogeology for deep mining in Sanshandao gold mine[J]. Nonferrous Mines,2001,30(3):9-12.
18 张寿全,黄巍 . 三山岛金矿F3断裂带的水文地质工程地质特征及灾害防治[J]. 工程地质学报,1994 (1):62-72.
Zhang Shouquan , Huang Wei . Hydrogeological and engineering features of F3 fracture zone in Sanshan island gold mine district and prevention of hazards[J]. Journal of Engineering Geology,1994,2(1):62-72.
19 高松,张军进,孙珊珊,等 . 三山岛北部海域金矿区水文地质特征分析[J]. 黄金科学技术,2016,24(1):11-16.
Gao Song , Zhang Junjin , Sun Shanshan ,et al . Hydrogeological characteristics of gold deoposit in north sea area of Sanshandao[J]. Gold Science and Technology,2016,24(1):11-16.
20 李国庆,马凤山,孟召平 . 新立矿区海底金属矿坑与上覆海水的连通性分析[J]. 中南大学学报(自然科学版),2012,43 ( 10) :3938-3945.
Li Guoqing , Ma Fengshan , Meng Zhaoping . Analysis of connectivity between undersea metal mine and overlying seawater in Xinli mine area[J]. Journal of Central South University(Science and Technology),2012,43(10):3938-3945.
21 柳鉴容,宋献方,袁国富,等 . 中国东部季风区大气降水δ 18O的特征及水汽来源[J].科学通报,2009,54(22):3521-3531.
Liu Jianrong , Song Xianfang , Yuan Guofu ,et al . Characteristics of δ 18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin,2009,54(22):3521-3531.
22 杨立强,邓军,王中亮,等 . 胶东中生代金成矿系统[J].岩石学报,2014,30(9):2447-2467.
Yang Liqiang , Deng Jun , Wang Zhongliang , et al . Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China[J]. Acta Petrologica Sinica,2014,30(9):2447-2467.
23 Pang Z H , Kong Y L , Li J ,et al . An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science,2017,17:534-537.
24 Ma F S , Yang Y S , Yuan R M ,et al . Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry[J]. Environmental Earth Sciences,2007,51:1009-1017.
25 李克蓬,马凤山,张洪训,等 . 海底金矿矿坑涌水水源判识及演化研究[J]. 工程地质学报, 2017,25(1):180-189.
Li Kepeng , Ma Fengshan , Zhang Hongxun ,et al . Recharge source identification and evolution of inflowing water in a seabed gold mine [J]. Journal of Engineering Geology,2017,25(1):180-189.
[1] 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019, 27(2): 207-215.
[2] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47-56.
[3] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73-80.
[4] 马凤山,郭捷,李克蓬,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J]. 黄金科学技术, 2016, 24(4): 66-72.
[5] 吴若菡,贾万玉,刘国栋. 三山岛金矿溜矿系统防尘措施探讨[J]. 黄金科学技术, 2015, 23(3): 73-76.
[6] 赵龙,吴昌晓,孙铭骏,王楠. 三山岛金矿深井充填系统影响因素分析及优化[J]. 黄金科学技术, 2014, 22(6): 46-49.
[7] 赵龙,王楠,孙铭骏. 盘区充填采矿法二步采转层优化在三山岛金矿的应用[J]. 黄金科学技术, 2013, 21(6): 73-77.
[8] 王振军,李伟明,原波. 山东三山岛—新立—仓上金矿床构造叠加晕特征浅析[J]. 黄金科学技术, 2013, 21(4): 48-53.
[9] 丁剑锋,刘丰韬,陈国平,王芳,陈兵宇,武志明,王莉,王京生. 化学注浆技术在三山岛金矿的研究与应用[J]. J4, 2012, 20(4): 54-57.
[10] 刘福江,王元魁,王振军,魏开林,武志明. 提高多节理裂隙矿岩爆破质量的探讨[J]. J4, 2012, 20(2): 71-73.
[11] 王成钊,宋立昌,战澍楷,薛汝和,王智业,原英君. 山东三山岛金矿IH100-65-315/75kW水泵的技术改造[J]. J4, 2012, 20(1): 86-88.
[12] 赵景博,杜飞. 多井提升平行作业在井巷工程施工中的应用[J]. J4, 2011, 19(6): 55-56.
[13] 魏开林,王振军,班峻魁,王元魁,杨鸿,吴志明. Surpac 软件在三山岛金矿的应用[J]. J4, 2011, 19(5): 72-75.
[14] 谢敏雄,王晓东. 湿法炼金废水处理工艺的试验研究与流程选择[J]. J4, 2011, 19(4): 62-64.
[15] 周国发,吕古贤,申玉科,郭涛,李威. 山东三山岛金矿床地质特征及找矿预测[J]. J4, 2011, 19(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!