img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 545-554.doi: 10.11872/j.issn.1005-2518.2021.04.156

• 采选技术与矿山管理 • 上一篇    

温度冲击对花岗岩动态拉伸力学性能的影响

李柏锦1(),李响1,2,王彦3(),尹土兵1,李夕兵1   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中山大学土木工程学院,广东 珠海 519082
    3.中南大学机电工程学院,湖南 长沙 410012
  • 收稿日期:2020-08-31 修回日期:2020-12-30 出版日期:2021-08-31 发布日期:2021-10-08
  • 通讯作者: 王彦 E-mail:877195718@qq.com;wangyancumt@163.com
  • 作者简介:李柏锦(1996-),男,云南昆明人,硕士研究生,从事岩石力学研究工作。877195718@qq.com
  • 基金资助:
    国家自然科学基金项目“深部资源开采诱发岩体动力灾害机理与防控方法研究”(41630642);“开采扰动下深部工程结构的动态响应机理”(11972378);“深部高温高应力岩石动态断裂特征及微观破裂机理”(51774325)

Effect of Thermal Shock on the Dynamic Tensile Mechanical Behavior of Granite

Baijin LI1(),Xiang LI1,2,Yan WANG3(),Tubing YIN1,Xibing LI1   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.School of Civil Engineering,Sun Yat-sen University,Zhuhai 519082,Guangdong,China
    3.School of Mechanical and Electrical Engineering,Central South University,Changsha 410012,Hunan,China
  • Received:2020-08-31 Revised:2020-12-30 Online:2021-08-31 Published:2021-10-08
  • Contact: Yan WANG E-mail:877195718@qq.com;wangyancumt@163.com

摘要:

在特定情况下,岩体工程中的岩石会经历温度快速变化(温度冲击),因此研究温度冲击对岩石的影响对实际工程中岩体的稳定性分析有重要意义。通过将花岗岩试件加热至3种高温(200,400,600 ℃),并采用3种方法冷却,研究了温度冲击对花岗岩物理性质的影响;使用分离式霍普金森压杆研究了温度冲击对花岗岩动态拉伸特性的影响,发现其动态拉伸强度随加热温度和冷却速率的增大而减小;使用高速摄影仪记录试件拉伸破坏时的裂纹形态,结合碎块形态,分析温度冲击对花岗岩的损伤程度,得出200 ℃加热条件下花岗岩不产生温度冲击,而在400 ℃和600 ℃加热条件下,花岗岩损伤程度随加热温度和冷却速率的增大而增大。

关键词: 花岗岩, 温度冲击, 冷却速率, 霍普金森杆, 动态拉伸强度, 高速摄影

Abstract:

Under certain conditions,such as the drilling surrounding rock cooled by drilling fluid in geothermal development,the surrounding rock rapid cooled in the process of extinguishing the fire,rock in rock mass engineering will experience rapid temperature change(thermal shock).Therefore the study of thermal shock in rocks is of great significance for stability analysis of rock structure affected by thermal shock.Granite specimens were heated to the high temperatures of 200 ℃,400 ℃ and 600 ℃,and then cooled by three methods of water cooling,air cooling and cooling in the stove.The physical properties such as dry density,P-wave velocity,porosity of granite after distinctive thermal shock were measured.The dry density and porosity were measured with buoyancy techniques.The P-wave velocity was measured by a non-destructive ultrasonic detector.As the heating level and cooling rate rise,the dry density and P-wave velocity present a descending trend,and the porosity presents an ascending trend.The damage degree of granite increases with the increase of heating temperature and cooling rate.The dynamic tensile tests were performed on the specimens after distinctive thermal shock treatment utilizing the split Hopkinson pressure bar system.The dynamic tensile strength of granite heated at 600 ℃ is less than that of granite heated at 400 ℃ and 200 ℃,and the dynamic tensile strength of water-cooled granite is less than that of air-cooled and stove-cooled granite.The damage degree of the granite caused by thermal shock was analyzed by the crack morphology of the specimens recorded by high-speed photography during the tensile failure and the morphology of the broken pieces after failure.The results show that the damage degree of granite increases with the increase of heating level and cooling rate.Scanning electron microscopy (SEM) was used to identify the microcosmic damage and fracture characteristics of granite caused by thermal shock.There are two kinds of characteristic fracture morphology of thermal shock were observed on the specimens after heated at 400 ℃ and 600 ℃ (both air-cooled and water-cooled conditions).However,neither fracture morphology can be found at 200 ℃ (including 3 kinds of cooling conditions).Therefore,there is no thermal shock at 200 ℃;When the heating level reaches 400 ℃,the granite is damaged by high temperature and thermal shock.When the heating level reaches 600 ℃,the granite is badly damaged.And the damage degree of granite increases with the increase of heating temperature and cooling rate.This study can provide theoretical basis for the analysis of thermal shock damage and the evaluation of rock mass stability after high temperature disaster in practical engineering.

Key words: granite, thermal shock, cooling rate, split Hopkinson pressure bar, dynamic tensile strength, high-speed photography

中图分类号: 

  • TU452

图1

巴西圆盘试件及其显微照片Qtz-石英;Pl-斜长石;Bt-黑云母;Ms-白云母"

表1

试件温度处理分类"

冷却方式加热等级及试件分组
200 ℃400 ℃600 ℃对照组(无温度处理)
炉内冷却8个试件8个试件8个试件
空气冷却8个试件8个试件8个试件8个试件
水中冷却8个试件8个试件8个试件

图2

加热炉与水中冷却示意图"

图3

试件温度变化图"

图4

温度冲击处理后花岗岩物理性质变化规律"

图5

霍普金森杆系统"

图6

应力加载历史图"

图7

不同温度冲击条件下花岗岩动态拉伸特性"

图8

花岗岩试件在冲击试验中的裂纹形态(高速摄影)"

图9

不同温度冲击处理的花岗岩试件在动态冲击试验后的碎片形态"

图10

温度冲击后试件的裂纹形态(a)、(b)Hall et al.(2014)发现的温度冲击所产生的正交裂缝和多边形裂缝;(c)、(d)本次试验涉及温度冲击的试件中发现的正交裂缝和多边形裂缝"

Dai F,Huang S,Xia K,al et,2010.Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar[J].Rock Mechanics and Rock Engineering,43(6):657-666.
Dolino G,Bachheimer J P,1982.Effect of the α—β transition on mechanical properties of quartz[J].Ferroelectrics,43(1):77-86.
Du Shouji,Liu Hua,Zhi Hongtao,al et,2004.Testing study on mechanical properties of post-high-temperature granite[J].Chinese Journal of Rock Mechanics and Engineering,23(14):2359-2364.
Fuenkajorn K,Kenkhunthod N,2010.Influence of loading rate on deformability and compressive strength of three thai sandstones[J].Geotechnical and Geological Engineering,28(5):707-715.
Hall K,Thorn C E,2014.Thermal fatigue and thermal shock in bedrock:An attempt to unravel the geomorphic processes and products[J].Geomorphology,206:1-13.
Han G S,Jing H W,Su H J,al et,2019.Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone[J].Environmental Earth Sciences,78(5):1-9.
Huang Y H,Yang S Q,Bu Y S,2020.Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression[J].Theoretical and Applied Fracture Mechanics,106:102474.
Huang Zhongwei,Wen Haitao,Wu Xiaoguang,al et,2019.Experimental study on cracking of high temperature granite using liquid nitrogen[J].Journal of China University of Petroleum(Edition of Natural Science),43(2):68-76.
ISRM,1979.Suggested methods for determining water content,porosity density,absorption and related properties and swelling and slake-durability index properties[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,16(2):151-156.
Li X,Zhang Z Y,Chen W,al et,2019.Mode Ⅰ and Mode Ⅱ granite fractures after distinct thermal shock treatments[J].Journal of Materials in Civil Engineering,31(4):06019001.
Liu S,Xu J Y,2014.Mechanical properties of Qinling biotite granite after high temperature treatment[J].International Journal of Rock Mechanics and Mining Sciences,71:188-193.
Memari A,Khoshravan Azar M R,2019.Thermo-mechanical shock fracture analysis by meshless method[J].Theoretical and Applied Fracture Mechanics,102:171-192.
Ozguven A,Ozcelik Y,2014.Effects of high temperature on physico-mechanical properties of Turkish natural building stones[J].Engineering Geology,183:127-136.
Richter D,Simmons G,1974.Thermal expansion behavior of igneous rocks[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,11(10):403-411.
Sirdesai N N,Singh T N,Ranjith P G,al et,2017.Effect of varied durations of thermal treatment on the tensile strength of red sandstone[J].Rock Mechanics and Rock Engineering,50(1):205-213.
Wan Zhang.Experimental Study on Dynamic Behavior of Thermal Treated Granite[D].Hangzhou:Zhejiang University,2017.
Wang P,Xu J Y,Fang X Y,al et,2017.Dynamic splitting tensile behaviors of red-sandstone subjected to repeated thermal shocks:Deterioration and micro-mechanism[J].Engineering Geology,223:1-10.
Wang P,Xu J Y,Liu S H,al et,2016.Dynamic mechanical properties and deterioration of red-sandstone subjected to repeated thermal shocks[J].Engineering Geology,212:44-52.
Wang Q Z,Li W,Xie H P,2009.Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup[J].Mechanics of Materials,41(3):252-260.
Wang Xinmin,Xiao Weiguo,Zhang Qinli,2005.Theory and Technology of Deep Mine Filling[M].Changsha:Central South University Press.
Wire W O,2011.Parker Drilling-operated Yastreb rig sets new world record[N/OL].Worldoil,(2011-02-22)[2020-07-01]..
Wu Hao,Xu Feng,Zhang Ping,2019.Effect of high temperature on strength characteristics of sandstone[J].Safety in Coal Mines,50(7):61-64.
Xi Baoping,Wu Yangchun,Wang Shuai,al et,2020.Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures[J].Rock and Soil Mechanics,41(Supp.1):83-94.
Yin T B,Bai L,Li X B,al et,2018.Effect of thermal treatment on the mode Ⅰ fracture toughness of granite under dynamic and static coupling load[J].Engineering Fracture Mechanics,199:143-158.
Yin T B,Li X B,Cao W Z,al et,2015.Effects of thermal treatment on tensile strength of laurentian granite using brazilian test[J].Rock Mechanics and Rock Engineering,48(6):2213-2223.
Yin T B,Shu R H,Li X B,al et,2016a.Comparison of mechanical properties in high temperature and thermal treatment granite[J].Transactions of Nonferrous Metals Society of China,26(7):1926-1937.
Yin T B,Wang P,Li X B,al et,2016b.Effects of thermal treatment on physical and mechanical characteristics of coal rock[J].Journal of Central South University,23(9):2336-2345.
Zhao J,Li H B,2000.Experimental determination of dynamic tensile properties of a granite[J].International Journal of Rock Mechanics and Mining Sciences,37(5):861-866.
Zhao Z H,Liu Z N,Pu H,al et,2018.Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions[J].Rock Mechanics and Rock Engineering,51(4):1293-1303.
Zhou Z L,Li X B,Liu A H,al et,2011.Stress uniformity of split Hopkinson pressure bar under half-sine wave loads[J].International Journal of Rock Mechanics and Mining Sciences,48(4):697-701.
杜守继,刘华,职洪涛,等,2004.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,23(14):2359-2364.
黄中伟,温海涛,武晓光,等,2019.液氮冷却作用下高温花岗岩损伤实验[J].中国石油大学学报(自然科学版),43(2):68-76.
万璋.高温后花岗岩动态力学特性实验研究[D].杭州:浙江大学,2017.
王新民,肖卫国,张钦礼,2005.深井矿山充填理论与技术[M].长沙:中南大学出版社.
吴豪,徐峰,张萍,2019.高温对砂岩强度特性的影响试验研究[J].煤矿安全,50(7):61-64.
郤保平,吴阳春,王帅,等,2020.热冲击作用下花岗岩力学特性及其随冷却温度演变规律试验研究[J].岩土力学,41(增1):83-94.
[1] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[2] 赵建平,王明虎,赵奕翰. 含水率对砂岩动态拉伸强度的影响[J]. 黄金科学技术, 2019, 27(2): 216-222.
[3] 陈静,胡继春,逯永卓,卢世银,王树林,徐贝贝. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465-472.
[4] 侯江龙,李建康,王登红,陈振宇,代鸿章,刘丽君. 四川甲基卡锂矿区花岗岩体中黑云母的地球化学特征及其地质意义[J]. 黄金科学技术, 2017, 25(6): 1-8.
[5] 高帅,曾庆栋,于昌明,邢宝山,荆林海,叶杰,范宏瑞,杨奎锋. 遥感及综合物探方法用于山东招远南部隐伏成矿侵入体的空间定位[J]. 黄金科学技术, 2017, 25(5): 1-10.
[6] 李太兵,李永光,易建春. 湖南曲溪金矿床成矿作用及成矿物质来源探讨[J]. J4, 2012, 20(4): 104-108.
[7] 杨晋升,阎书杰,张殿龙,刘文化,张瑞忠,张涛. 山东埠上金矿床花岗岩、脉岩与金成矿关系研究[J]. J4, 2011, 19(2): 52-55.
[8] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6-10.
[9] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1-7.
[10] 尹西君. 乌云盆地林海花岗岩体地球化学特征及其与成矿的关系[J]. J4, 2010, 18(5): 47-51.
[11] 任广智, 赵玉锁, 肖振, 卿敏, 魏峰, 缪振平. 河北峪耳崖金矿床矿体赋存规律及找矿预测[J]. J4, 2010, 18(4): 27-32.
[12] 王雪萍, 赵有军, 雷爱全. 青海南部三江北段莫云一东坝地区铀地球化学异常特征及其找矿潜力[J]. J4, 2007, 15(5): 44-49.
[13] 辛洪波, 邓军, 曲晓明, 王建国, 胡世杰. 胶东谢家沟金矿床地质特征与成矿时代研究[J]. J4, 2006, 14(3): 1-6.
[14] 李晓瑛. 试论胶东花岗岩—绿岩地体剪切带超大型金矿[J]. J4, 2002, 10(2): 13-15.
[15] 王义文,董诗昌. 辽宁省金矿资源潜力及对勘查工作的几点建议[J]. J4, 1993, 1(3): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!