img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 13-30.doi: 10.11872/j.issn.1005-2518.2024.01.142

• 矿产勘查与资源评价 • 上一篇    下一篇

南秦岭镇安西部钨钼矿集区成矿物质来源研究

韩珂1(),杨兴科2   

  1. 1.中煤科工西安研究院(集团)有限公司,陕西 西安 710077
    2.长安大学地球科学与资源学院,陕西 西安 710054
  • 收稿日期:2023-10-10 修回日期:2023-11-20 出版日期:2024-02-29 发布日期:2024-03-22
  • 作者简介:韩珂(1990-),男,陕西礼泉人,博士,助理研究员,从事矿田构造和煤矿地质研究工作。hanke@cctegxian.com
  • 基金资助:
    陕西省地勘基金成果集成项目“陕西秦岭成矿带金矿成矿规律与找矿预测”(61201506280)

Study on the Ore-forming Materials Source of the Western Zhen’an W-Mo Ore Concentration Area in Southern Qinling Moutains

Ke HAN1(),Xingke YANG2   

  1. 1.CCTEG Xi’an Research Institute(Group) Co. , Ltd. , Xi’an 710077, Shaanxi, China
    2.School of Earth Sciences and Resources, Chang’an University, Xi’an 710054, Shaanxi, China
  • Received:2023-10-10 Revised:2023-11-20 Online:2024-02-29 Published:2024-03-22

摘要:

为了查明南秦岭镇安西部大型钨钼多金属矿集区成矿物质来源,在矿床基础地质研究的基础上,运用岩石地球化学、硫化物单矿物硫同位素地球化学和锆石U-Pb同位素、辉钼矿Re-Os同位素地球化学等方法,对复式中酸性侵入体与钨钼成矿的时空关系和成因联系进行深入研究。结果表明:懒板凳岩体田湾单元、王家坪隐伏岩体和花岗细晶岩脉富集Si元素,且Mg#值和稀土总量较低,稀土元素配分曲线呈明显的四分组效应并具有强负Eu异常,岩浆分异结晶程度高;懒板凳岩体九间屋单元和王家坪隐伏岩体锆石U-Pb同位素年龄分别为(222.7±2.6)Ma和(201.6±4.7)Ma,棋盘沟钨矿床和江口钼矿床中辉钼矿Re-Os同位素模式年龄分别为(199.7±3.9)Ma和(198.7±3.9)Ma;钨钼矿床中硫化物单矿物δ34S值为3.6‰~10.2‰,推测成矿物质来源于复式岩体晚阶段形成于190~200 Ma之间的高分异演化酸性侵入体。

关键词: 钨钼矿集区, 成矿物质来源, 复式岩体, 镇安西部, 南秦岭

Abstract:

The large tungsten-molybdenum polymetallic ore concentration area in the western of Zhen’an,Shaanxi Province is located in the north of the southern Qinling tectonic belt,where faults,joints and complex intermediate-acid intrusions are closely related to skarn type and quartz vein type tungsten-molybdenum mineralization.Although certain exploration and research achievements have been made in the study area,it is still unclear which period of magmatic activity in the complex massif is related to mineralization.That is,the source of ore-forming materials is still unclear,which restricts the further exploration and prospecting.On the basis of the basic geological study of the deposit,related magmatic rock samples were collected for geochemical testing and zircon U-Pb isotope dating,sulfide mineral for sulfur isotope analysis,and molybdenite for Re-Os isotope dating.Based on the spatio-temporal relationship between complex massif and tungsten-molybdenum mineralization,it is considered that the Tianwan unit of Lanbandeng rock mass,Wangjiaping concealed rock mass and granitic fine-grained dike are rich in SiO2,and the Mg# and the total REE content are low.The REE distribution curve shows obvious tetrad effect with strong negative Eu anomaly,and the magmatic differentiation crystallization degree is high.Zircon U-Pb isotope ages of Jiujianwu unit of Lanbandeng rock mass and Wangjiaping concealed rock mass are (222.7±2.6)Ma and (201.6±4.7)Ma,respectively. The Re-Os isotope model ages of molybdenite in Qipangou tungsten deposit and Jiangkou molybdenum deposit are (199.7±3.9)Ma and (198.7±3.9)Ma,respectively. The sulfide mineral δ34S of tungstan-molybdenum deposit ranges from 3.6‰ to 10.2‰.The source of ore-forming materials should be the acid intrusion formed in late stage between 190 Ma and 200 Ma,which is represented by Tianwan unit of Lanbandeng rock mass,Wangjiaping concealed rock mass and granitic dike.

Key words: tungsten-molybdenum ore concentration area, ore-forming material source, complex rock mass, western area of Zhen’an, southern Qinling

中图分类号: 

  • P618.2

图1

镇安西部钨钼多金属矿集区矿产地质图(修改自杨兴科等,2018)1.第四系全新统冲积层(Qhal);2.四峡口组(C2s);3.九里坪组(D3-C1j);4.星红铺组(D3x);5.古道岭组(D2-3g);6.大枫沟组(D2d);7.牛耳川组(D2n);8.石家沟组(D2sh);9.公馆组(D1g);10.梅子垭组(S1-2m);11.斑鸠关组(О3-S1-2b);12.两岔口组(O2-3l);13.白龙洞组(О1-2bl);14.石瓮子组(∈1-O1-2s);15.水沟口组(∈1sg);16.灯影组(Z2dy);17.陡山沱组(Z1d);18.耀岭河岩群(Pt3Y);19.陡岭岩群(Pt1D);20.响潭沟变质酸性杂岩;21.小磨岭火山杂岩;22.胭脂坝岩体鹰咀石单元,似斑状中—粗粒黑云母二长花岗岩;23.胭脂坝/懒板凳岩体田湾单元,中—细粒黑云母二长花岗岩;24.懒板凳岩体小水河单元,细粒黑云母二长花岗岩;25.懒板凳岩体九间屋单元,似斑状中—粗粒黑云二长花岗岩;26.东江口岩体小川街单元,中—细粒黑云角闪石英二长岩;27.东江口岩体六里街单元,似斑状中—粗粒黑云母二长花岗岩;28.花岗伟晶岩脉;29.花岗细晶岩脉;30.伟晶岩脉;31.石英脉;32.闪长岩脉;33.角岩化带;34.矽卡岩化带;35.断层;36.韧性剪切带;37.钨/钼矿;38.钒/铜矿;39.金/铁矿;40.银/镍矿;41.铅锌/锡矿;42.岩浆岩采样位置;43.钨钼矿石采样位置;44.王家坪隐伏岩体位置;F1-山阳—凤镇断裂;F2-小川街—梅花店断裂;F3-三官庙—鱼洞峡断裂;F4-镇安—板岩镇断裂;F5-仁河口—公馆断裂;F6-太山庙—丝铺推覆断裂;F7-江口断裂;F8-旬阳坝—五间房断裂;F9-长坪—胭脂坝断裂;F10-六里街断裂;F11-黄金美断裂;F12-东川河断裂;F13-杨沟断裂;F14-小磨岭断裂;F15-杨木沟断裂"

图2

镇安西部钨钼矿集区构造—蚀变—矿化特征①-含钨矿硅化大理岩;②-稠密浸染状钨矿化矽卡岩;③-灰色结晶大理岩;④-浸染状钨矿化矽卡岩;⑤-钨矿化石英脉;⑥-稀疏浸染状钨矿化矽卡岩;⑦-黄褐色氧化带;Qtz-石英;Bt-黑云母;Mot-辉钼矿;Py-黄铁矿;Sch-白钨矿;Di-透辉石;Pl-斜长石;Ms-白云母;Sk-矽卡岩"

图3

杨沟—地耳沟钨钼矿区地质简图1.第四系残坡积物及河流冲积物;2.下寒武—中奥陶统石瓮子组(∈1-O1-2s);3.钼矿(化)石英脉;4.钨矿(化)石英脉;5.产状;6.勘探线;7.见矿钻孔;8.坑道"

表1

镇安西部矿集区岩浆岩主量成分分析结果"

岩石类型样品编号SiO2TiO2Al2O3MnOMgOCaONa2OK2OP2O5TFe2O3LOITotal
懒板凳中—粗粒黑云母二长花岗岩DY-172.630.1613.860.060.261.403.624.720.051.361.3799.48
DY-272.470.1814.090.060.271.333.644.840.051.461.1599.54
DY-372.390.1814.260.070.281.313.694.780.051.661.0199.68
DY-472.970.2313.900.060.441.393.504.710.061.800.4399.49
DY-573.180.2213.900.070.371.413.604.500.061.770.4899.55
DY-674.250.1213.630.100.301.083.664.580.031.530.2899.55
DY-774.300.1913.500.060.631.323.514.690.041.640.60100.48
懒板凳中—细粒黑云母二长花岗岩DY-874.340.0414.190.100.060.604.684.140.011.000.3799.52
DY-974.080.0514.260.080.110.263.625.570.010.830.6599.52
PM9-174.690.0913.660.030.091.143.594.510.020.780.9699.56
PM9-374.050.1714.080.040.260.943.325.380.041.390.48100.15
四海坪中—细粒黑云母二长花岗岩G10171.470.3014.760.050.431.603.724.370.091.930.3999.11
G10372.090.2914.810.040.421.593.714.300.081.880.3499.55
王家坪隐伏中—细粒黑云母二长花岗岩WJP-172.750.1213.930.060.181.084.104.200.051.010.9298.40
WJP-373.710.1714.410.090.281.104.123.980.061.390.6399.94
WJP-472.520.0515.170.020.080.663.486.640.060.670.5799.92
56ZK01-873.210.1414.440.050.201.224.144.210.041.050.9899.68
56ZK01-1073.070.1513.920.050.181.114.014.310.050.981.2499.07
隐伏岩体中花岗细晶岩脉56ZK01-1275.470.0714.410.090.100.724.663.960.020.760.62100.88
56ZK01-1376.020.0414.240.050.080.474.961.640.020.431.3299.27
56ZK01-1472.540.0314.920.070.060.724.285.280.020.340.9499.20
ZK501-478.530.0412.590.040.180.354.941.150.020.661.1899.68
ZK501-573.250.0514.710.050.061.555.821.030.010.692.0299.24
ZK501-675.900.0413.720.110.061.205.601.280.010.401.77100.09

表2

镇安西部矿集区岩浆岩稀土微量元素分析结果"

岩石类型样品编号LaCePrNdSmEuGdTbDyHoErTm
懒板凳中—粗粒黑云母二长花岗岩DY-135.5170.507.7628.515.660.714.890.723.630.551.420.21
DY-234.0468.647.8428.485.680.624.840.763.780.591.560.26
DY-331.1362.106.9325.025.110.604.500.693.550.561.530.24
DY-433.3266.837.5327.865.710.654.910.804.290.741.960.31
DY-531.1064.727.3726.915.420.584.740.804.490.731.990.32
DY-628.6157.706.8025.436.110.525.591.076.591.223.580.62
DY-727.3056.406.6424.785.860.585.471.086.771.283.880.70
懒板凳中—细粒黑云母二长花岗岩DY-86.6916.502.3510.304.080.123.330.846.121.133.340.72
DY-99.6621.703.2113.805.120.213.921.016.451.123.200.67
PM9-17.6316.602.058.342.450.342.430.483.300.751.710.32
PM9-36.0013.611.848.092.640.352.940.634.320.922.290.42
四海坪中—细粒黑云母二长花岗岩G10131.1060.947.3227.214.950.864.640.633.740.721.840.33
G10328.3655.756.7225.544.800.794.260.663.800.711.720.30
王家坪隐伏中—细粒黑云母二长花岗岩WJP-19.4221.152.7911.263.940.484.651.006.621.314.030.59
WJP-311.8925.043.2013.023.980.484.020.845.541.113.360.50
WJP-45.2613.442.1310.475.240.266.721.268.771.724.880.78
56ZK01-810.3621.552.6911.342.590.392.970.543.230.651.570.29
56ZK01-1010.5522.962.8312.453.620.424.260.845.471.102.830.55
隐伏岩体中花岗细晶岩脉56ZK01-128.4524.094.0020.9810.310.1613.213.0321.294.2311.142.10
56ZK01-134.1711.091.677.703.330.063.270.714.530.812.170.40
56ZK01-142.786.481.025.122.700.123.430.96.111.163.150.64
ZK501-44.1911.271.757.843.500.063.620.784.930.822.140.47
ZK501-58.9723.913.6216.797.220.076.011.196.761.092.560.51
ZK501-64.9212.771.978.43.610.063.450.713.960.772.040.45

图4

镇安西部钨钼矿集区主要岩体稀土元素配分曲线和微量元素蛛网图注:稀土元素标准化值据McDonough(1989);原始地幔标准化值据McDonough et al.(1995)"

表3

懒板凳九间屋单元、王家坪隐伏岩体和花岗细晶岩脉锆石U-Pb同位素测年数据"

点号Z1(中—粗粒黑云母二长花岗岩)测年数据
Th(×10-6U/(×10-6Th/U比值207Pb/235U比值1σ206Pb/238U比值1σ207Pb/235U年龄/Ma1σ206Pb/238U年龄/Ma1σ
11 7203 7830.450.252350.004980.034770.0004322842203
21 7742 4750.680.238460.005230.034810.0005221742213
32 7144 4170.600.248750.005200.034740.0005222642203
41 6052 6180.610.249820.006350.035990.0004222652283
51 3753 3820.410.246840.005840.035610.0004922452263
61 2992 1210.600.241990.006630.034410.0004822052183
72 0633 1490.650.250700.005760.034710.0004622752203
81 1082 3140.470.242050.006210.035580.0005522052253
92 0722 6940.770.244920.006330.035580.0005722252254
101 5562 4250.630.230490.006120.034530.0006021152194
112 1413 2440.650.246270.005880.034780.0008322452205
121 8532 8560.630.253150.005540.035910.0005022942273
点号Z2(中—细粒黑云母二长花岗岩)测年数据
Th(×10-6U/(×10-6Th/U比值207Pb/235U比值1σ206Pb/238U比值1σ207Pb/235U年龄/Ma1σ206Pb/238U年龄/Ma1σ
16941 2780.520.218040.007600.031050.0007120061974
24251 5730.250.232760.008190.031620.0006921272014
37053 6400.200.235650.007010.031540.0008821562006
43151 5490.180.245680.008970.032540.0006222372064
55929410.540.227700.009860.030900.0012220881968
64961 0450.420.232210.011500.032160.0006421292044
72155200.350.237580.013620.031920.00067216112034
83595970.420.207680.017380.031990.002291921520314
94521 1390.350.225630.010470.031920.0006620792034
107941 3010.580.243990.011890.031710.00062222102014
115431 5120.340.250670.010510.032520.0006422792064
126381 6230.400.223690.011440.031350.00184205919912
131 4836 7520.240.239490.010250.032230.0009821882056
144199420.580.203940.030650.031820.001981882620212
点号Z3(花岗细晶岩脉)测年数据
Th(×10-6U/(×10-6Th/U比值207Pb/235U比值1σ206Pb/238U比值1σ207Pb/235U年龄/Ma1σ206Pb/238U年龄/Ma1σ
11 36510 5040.130.253590.009740.033100.0005922982104
29 03511 9430.760.226890.009490.030750.0010220881956
31 0858 2120.130.233070.007110.030760.0004721361953
46378 3910.080.235340.007200.034560.0005021562193
55545 9100.090.246450.007420.033820.0005922462144
61 3837 6100.180.238760.008500.032870.0005521772093
75327 8510.070.227770.008080.033920.0005420872153
82 1576 4720.330.219200.007610.031740.0006720162014
91 73310 9620.160.251860.009360.033570.0006422882134
103 6977 2350.510.245470.008390.032910.0005322372093
111 84810 4590.180.248410.007290.033180.0005122562103
126786 7460.100.239980.009060.033620.0007221872135
132 4619 0450.270.214870.007270.031100.0006119861974
141 1046 3660.170.251120.008540.033550.0006022772134

图5

懒板凳岩体九间屋单元(a)、王家坪隐伏岩体(b)和花岗细晶岩脉(c)单颗粒锆石阴极发光图像"

图6

懒板凳岩体九间屋单元(a)、王家坪隐伏岩体(b)和花岗细晶岩脉(c)锆石U-Pb谐和图及花岗细晶岩脉锆石稀土元素配分曲线图(d)注:稀土元素标准化值据McDonough(1989);岩浆和热液锆石稀土元素数据据Hoskin(2005)"

表4

镇安西部矿集区钨钼矿床S同位素组成"

矿区样品编号样品名称矿物δ34S/‰
棋盘沟QP-1含矿石英脉黄铁矿10.0
QP-2含矿石英脉黄铁矿10.2
QP-3含矿石英脉黄铁矿8.8
月河坪D190830含矿矽卡岩辉钼矿6.1
桂林沟D190814-1含矿伟晶岩辉钼矿4.0
D190814-2含矿石英脉辉钼矿3.6
D190814-3含矿石英脉辉钼矿4.3
大西沟D190819含矿花岗斑岩辉钼矿0.1
杨沟—地耳沟LPD1ZK06含矿石英脉辉钼矿7.1

图7

镇安西部矿集区钨钼矿床S同位素组成特征(底图据Hoefs,2009)1.含矿花岗斑岩;2.石英脉型矿化;3.矽卡岩型矿化;4.伟晶岩型矿化"

表5

辉钼矿Re-Os同位素测年结果"

样品编号样重/gRe/(×10-9Os/(×10-9Re187/(×10-9Os187/(×10-9模式年龄/Ma
测定值不确定度测定值不确定度测定值不确定度测定值不确定度测定值不确定度
QP-020.00531187 6301 1913.1810.355117 929749393.06.1199.73.9
JK-010.0052117 0571080.28920.0323107216835.550.56198.73.9

图8

镇安西部钨钼矿集区岩体年龄和钨钼成矿年龄对比"

图9

杨沟—地耳沟钨钼矿区深部隐伏成矿岩体示意图1.第四系残坡积物;2.大理岩;3.白云质大理岩;4.萤石矿化;5.辉钼矿(化)体;6.白钨矿(化)体;7.石英脉;8.隐伏黑云母二长花岗岩体;9.长石石英伟晶岩脉;10.产状"

Breiter K,2012.Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Kruné hory/Erzgebirge Mts.,Central Europe[J].Lithos,151:105-121.
Chen Qingmin, Guo Qiming, Wang Qiang,et al,2017.Zircon U-Pb dating and geochemical characteristics of Sihaiping pluton from southern Qinling orogenic belt in Shaanxi[J].Northwestern Geology,50(3):65-73.
Dai H Z, Wang D H, Wang C H,et al,2018.Re-Os isotopic dating of a W-Be polymetallic deposit in the southern Qinling region,China[J].Acta Geologica Sinica,92(1):414-415.
Dai Hongzhang, Wang Denghong, Liu Lijun,et al,2019.Metallogenic epoch and metallogenic model of the Hetaoping W- Be deposit in Zhen’an County,South Qinling[J].Acta Geologica Sinica,93(6):1342-1358.
Dai Junzhi, Yu Kangping, Wang Ruiting,et al,2015.Geological characteristics,Re-Os geochronology of Xinpu molybdenum deposit in Ningshan,southern Qinling and its implications[J].Acta Petrologica Sinica,31(1):189-199.
Dill H G,2015.Pegmatites and aplites:Their genetic and applied ore geology[J].Ore Geology Reviews,69:417-561.
Dong Y P, Zhang G W, Neubauer F,et al,2011.Tectonic evolution of the Qinling orogen,China:Review and synthesis[J].Journal of Asian Earth Sciences,41(3):213-237.
Gong Hujun, Zhu Laimin, Sun Boya,et al,2009.Zircon U-Pb ages and Hf isotope characteristics and their geological significance of the Shahewan,Caoping and Zhashui granitic plutons in the South Qinling orogen[J].Acta Petrologica Sinica,25(2):248-264.
Hoefs J,2009.Stable Isotope Geochemistry[M].Berlin:Sprin-ger.
Hoskin P W O,2005.Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia[J].Geochimica et Cosmochimica Acta,69(3):637-648.
Jiang Y H, Jin G D, Liao S Y,et al,2010.Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen,central China:Implications for a continental arc to continent-continent collision[J].Lithos,117(1/2/3/4):183-197.
Kovalenko V I, Kovalenko N I,1984.Problems of the origin,ore-bearing and evolution of rare-metal granitoids[J].Ph-ysics of the Earth and Planetary Interiors,35(1/2/3):51-62.
Li Lei, Zhang Chengli, Zhou Ying,et al,2012. Early Mesozoic crust- and mantle-derived magmatic mixing in the Qinling orogeny:Evidence from geochemistry of mafic microgranular enclaves in the Dongjiangkou pluton[J].Geological Jo-urnal of China Universities,18(2):291-306.
Li Shuangqing, Yang Xiaoyong, Qu Wenjun,et al,2010. Molybdenite Re-Os age and metallogeny of the Yueheping skarnmolybdenum deposit in Ningshan, southern Qinling[J].Acta Petrologica Sinica,26(5):1479-1486.
Li Shuiru, Wei Junhao, Deng Jun,et al,2007.Ore types of tungsten poly-metallic deposits and prospecting indications[J].China Tungsten Industry,22(6):19-24.
Li Yuntao,2016.Geological Characteristics and Metallogenesis of Taishanmiao Gold Deposit, Ningshan County [D].Xi’an:Chang’an University.
Liu Chunhua, Wu Cailai, Gao Yuanhong,et al,2014.Zircon LA-ICP-MS U-Pb dating and Lu-Hf isotopic system of Dongjiangkou,Zhashui and Liyuantang granitoid intrusions,South Qinling belt, central China[J].Acta Petrologica Sinica,30(8):2402-2420.
Liu Jianping, Teng Jiande,2007.Research on mineralization stages of Dajishan deposit zone in Jiangxi Province[J]. Nonferrous Metals(Mining Section),59(3):16-19.
Liu Qian,2013. The Characteristics and Genes’s of the Zhen’an W deposit,ShaanXi Province,China[D].Beijing:China University of Geosciences(Beijing).
Liu Shuwen, Yang Pengtao, Li Qiugen,et al,2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen, China[J]. Journal of Jilin University(Earth Science Edition),41(6):1928-1943.
Luan Yan, He Ke, Tan Xijuan,2019. In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS[J].Geological Bulletin of China,38(7):1206-1218.
Mao Guilai, Yan Shengwu, Li Yanlin,2012.Researches on Indosinian granites and mineralization in South Qinling[J].Geology of Shaanxi,30(2):46-55.
Mao Jingwen,1997.Metallogenic speciality of super giantpolymetallic tungsten deposit:Taking the Shizhuyuan deposit as an example[J].Scientia Geologica Sinica,32(3):351-363.
Mao Jingwen, Yang Jianmin, Zhang Zuoheng,et al,2000. The study on petrology, mineralogy and geochemistry of tungsten-bearing granitic rocks in the Yeniutan,Subei County,Gansu Province[J].Acta Geologica Sinica,74(2):142-155.
McDonough S,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications,42(1):313-345.
McDonough W F, Sun S S,1995.The composition of the earth[J].Chemical Geology,120:223-253.
Meng Xuyang, Wang Xiaoxia, Ke Changhui,et al,2013.LA-ICP-MS zircon U-Pb age, geochemistry and Hf isotope of the granitoids from Huayang pluton in South Qinling orogen:Constraints on the genesis of Wulong plutons[J].Ge-ological Bulletin of China,32(11):1704-1719.
Nie Rongfeng, Wang Xudong,2007.On research advancement of southern Jiangxi’s tungsten deposits[J]. China Tungsten Industry,22(3):1-5.
Ohmoto H,1986. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 16(1):491-559.
Ping X Q, Zheng J P, Zhao J H,et al,2013.Heterogeneous sources of the Triassic granitoid plutons in the southern Qinling orogen:An E‐W tectonic division in central China[J].Tectonics,32(3):396-416.
Qin Jiangfeng,2010.Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt[D].Xi’an:Northwest University.
Qin Yan, Wang Denghong, Sheng Jifu,et al,2019.A review of research achievements on REE geochemistry of tungsten deposits in China[J].Geology in China,6(6):1300-1311.
Raimbaulti L, Burnol L,1998.The Richemont rhyolite dyke,Massif Central,France:A subvolcanic equivalent of rare-metal granites[J].Canadian Mineralogist,36(2):265-282.
Ruan Shiqi,2019.Tectonic and Fluid Characteristics and Genesis Model of Qipangou Tungsten Deposit in West Zhen’an, South Qinling[D].Xi’an:Chang’an University.
Shi Hongzhao, Lin Fangcheng, Zhang Linkui,2009.Spatio-temporal distribution and current state of the research of the tungsten deposits:An overview[J].Sedimentary Geology and Tethyan Geology,29(4):90-95.
Sun Weidong, Li Shuguang, Chen Yadong,et al,2000. Zircon U-Pb dating of granitoids from South Qinling,Central China and their geological significance [J]. Geochimica,29(3):209-216.
Wang Jieming, Cao Hongyuan, Dong Suqing,et al,2017.Genetic discussion and geological and characteristics of geochemical of Jinpen tungsten deposit in Zhen’an,Shaanxi Province[J].Science Technology and Engineering,17(30):1-8.
Wang Yizhong, Wang Dequan, Jiao Hongjian,et al,2017.Study on metallogenic model of Mo tungsten deposit[J]. World Nonferrous Metals,(17):154-157.
Wei Longmeng, Yang Yizeng, Zhang He,et al,2016.Petrogenesis of Yanzhiba granite in South Qinling:Constraints from zircon U-Pb ages, geochemistry and Sr-Nd-Pb isotope[J].Journal of Earth Sciences and Environment,38(4):527-546.
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang,et al,2017.Highly fractionated granites:Recognition and research[J].Scientia Sinica (Terrae),47(7):745-765.
Xiong Xin, Xu Wenyi, Wen Chunhua,2015.Fluid characteristics and genesis of Xianglushan skarn scheelite deposit inXiushui,Jiangxi Province[J].Mineral Deposits,34(5):1046-1056.
Xue Huaimin, Wang Yinggeng, Ma Fang,et al,2009.The Huangshan A-type granites with tetrad REE:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton?[J].Acta Geologica Sinica,83(2):247-259.
Yang Kai, Liu Shuwen, Li Qiugen,et al,2009. LA-ICP-MS zircon U-Pb geochronology and geological significance of Zhashui granitoids and Dongjiangkou granitoids from Qinling, central China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,45(5):841-847.
Yang P T, Liu S W, Li Q G,et al,2011.Ages of the Laocheng granitoids and crustal growth in the South Qinling tectonic domain,central China:zircon U-Pb and Lu-Hf isotopic constraints[J].Acta Geologica Sinica,85(4):854-869.
Yang P T, Liu S W, Li Q G,et al,2012.Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith,middle segment of the south Qinling belt,central China:constraints on petrogenesis and geodynamic processes[J].Journal of Asian Earth Sciences,61(15):166-186.
Yang Xingke, Chao Huixia, Ruan Shiqi,et al,2018.Research report on magmatism and tungsten-molybdenum mineralization in the western ore concentration area of Zhen’an [R].Xi’an:Chang’an University.
Yao Junming, Hua Renmin, Lin Jinfu,2005.Zircon LA-ICPMS U-Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan Province,China[J].Acta Petrologica Sinica,21(3):688-696.
You Minxin, Zhang Zhaowei, Wang Yalei,et al,2017.Zircon U-Pb age and the magma evolution process of the Huangshannan mafic-ultramafic intrusion in the East Tianshan Mountains[J].Geology and Exploration,53(5):903-914.
Zhai Yusheng,2002. Some features of regional metallogeny of China[J].Geology and Prospecting,38(5):1-4.
Zhang He,2017.Late Triassic magmatism and tectonic evolution of Foping Dome area in South Qinling[D].Hefei:University of Science and Technology of China.
Zhang Hong, Chen Danling, Zhai Mingguo,et al,2015.Molybdenite Re-Os dating and its tectonic significance of the Guilingou porphyry molybdenum deposit, southern Qinling[J].Acta Petrologica Sinica,31(7):2023-2037.
Zhao K D, Jiang S Y, Jiang Y H,et al,2005.Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan Province,South China:implication for the genesis of granite and related tin mineralization[J].European Journal of Mineralogy,17(4):635-648.
Zhao Xinmin, Guo Zhouping, Bai Yun,2015.Advances in study of skarn-type scheelite deposit[J].Geological Survey of China,2(1):9-13.
Zhu Xinyou, Wang Jingbin, Wang Yanli,et al,2013.Characteristics of greisen inclusions in alkali feldspar granite of Yaogangxian tungsten deposit[J].Mineral Deposits,32(3):533-544.
Zhu Yudi,2011. Characteristics of Granites and Discuss on the Genesis of the Tongcun Porphyry Mo (Cu) Deposit, Kaihua, Zhejiang Province[D].Beijing:China University of Geosciences(Beijing).
陈清敏,郭岐明,王强,等,2017.陕西南秦岭四海坪岩体锆石U-Pb年龄及地质意义[J].西北地质,50(3):65-73.
代鸿章,王登红,刘丽君,等,2019.南秦岭镇安核桃坪钨铍矿床成矿时代及成矿模式探讨[J].地质学报,93(6):1342-1358.
代军治,鱼康平,王瑞廷,等,2015.南秦岭宁陕地区新铺钼矿地质特征、辉钼矿Re-Os年龄及地质意义[J].岩石学报,31(1):189-199.
弓虎军,朱赖民,孙博亚,等,2009.南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J].岩石学报,25(2):248-264.
李雷,张成立,周莹,等,2012.秦岭早中生代壳幔岩浆混合作用——来自东江口花岗岩体闪长质包体的地球化学证据[J].高校地质学报,18(2):291-306.
李双庆,杨晓勇,屈文俊,等,2010.南秦岭宁陕地区月河坪矽卡岩型钼矿Re-Os年龄和矿床学特征[J].岩石学报,26(5):1479-1486.
李水如,魏俊浩,邓军,等,2007.广西大明山矿集区钨多金属矿床类型及控矿因素与找矿标志[J].中国钨业,22(6):19-24.
李云涛,2016.宁陕县太山庙金矿矿床地质特征与矿床成因[D].西安:长安大学.
刘春花,吴才来,郜源红,等,2014.南秦岭东江口、柞水和梨园堂花岗岩类锆石LA-ICP-MS U-Pb年代学与锆石Lu-Hf同位素组成[J].岩石学报,30(8):2402-2420.
刘建平,滕建德,2007.江西大吉山矿区成矿(矿化)阶段的研究[J].有色金属(矿山部分),59(3):16-19.
刘茜,2013.陕西镇安钨矿床特征及成因研究[D].北京:中国地质大学(北京).
刘树文,杨朋涛,李秋根,等,2011.秦岭中段印支期花岗质岩浆作用与造山过程[J].吉林大学学报(地球科学版),41(6):1928-1943.
栾燕,何克,谭细娟,2019.LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J].地质通报,38(7):1206-1218.
毛归来,鄢圣武,李彦林,2012.南秦岭印支期岩体与成矿研究[J].陕西地质,30(2):46-55.
毛景文,1997.超大型钨多金属矿床成矿特殊性——以湖南柿竹园矿床为例[J].地质科学,32(3):351-363.
毛景文,杨建民,张作衡,等,2000.甘肃肃北野牛滩含钨花岗质岩岩石学、矿物学和地球化学研究[J].地质学报,74(2):142-155.
孟旭阳,王晓霞,柯昌辉,等,2013.南秦岭华阳花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素组成——对五龙岩体群成因的约束[J].地质通报,32(11):1704-1719.
聂荣锋,王旭东,2007.赣南钨矿研究进展[J].中国钨业,22(3):1-5.
秦江锋,2010.秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D].西安:西北大学.
秦燕,王登红,盛继福,等,2019.中国不同类型钨矿床稀土元素地球化学研究成果综述[J].中国地质,6(6):1300-1311.
阮仕琦,2019.南秦岭镇安西部棋盘沟钨矿床构造和流体特征及成因模式探讨[D].西安:长安大学.
石洪召,林方成,张林奎,2009.钨矿床的时空分布及研究现状[J].沉积与特提斯地质,29(4):90-95.
孙卫东,李曙光, Chen Yadong,等,2000.南秦岭花岗岩锆石U-Pb定年及其地质意义[J].地球化学,29(3):209-216.
王洁明,曹宏远,董苏庆,等,2017.陕西镇安金盆钨矿床地质地球化学特征与矿床成因[J].科学技术与工程,17(30):1-8.
王义忠,王得权,焦宏剑,等,2017.杨泗庙—赖板凳钼钨矿成矿模式研究[J].世界有色金属,(17):154-157.
韦龙猛,杨一增,张贺,等,2016.南秦岭胭脂坝花岗岩成因:锆石U-Pb年龄、地球化学和Sr-Nd-Pb同位素的制约[J].地球科学与环境学报,38(4):527-546.
吴福元,刘小驰,纪伟强,等,2017.高分异花岗岩的识别与研究[J].中国科学(地球科学),47(7):745-765.
熊欣,徐文艺,文春华,2015.江西香炉山矽卡岩型白钨矿矿床成因与流体特征[J].矿床地质,34(5):1046-1056.
薛怀民,汪应庚,马芳,等,2009.高度演化的黄山A型花岗岩:对扬子克拉通东南部中生代岩石圈减薄的约束? [J].地质学报,83(2):247-259.
杨恺,刘树文,李秋根,等,2009.秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义[J].北京大学学报(自然科学版),45(5):841-847.
杨兴科,晁会霞,阮仕琦,等,2018.镇安西部矿集区岩浆作用与钨钼成矿研究报告[R].西安:长安大学.
姚军明,华仁民,林锦富,2005.湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征[J].岩石学报,21(3):688-696.
尤敏鑫,张照伟,王亚磊,等,2017.东天山黄山南镁铁—超镁铁质岩体锆石U-Pb年龄及岩浆演化过程探讨[J].地质与勘探,53(5):903-914.
翟裕生,2002.中国区域成矿特征探讨[J].地质与勘探,38(5):1-4.
张贺,2017.南秦岭佛坪穹窿地区晚三叠世岩浆作用和构造演化[D].合肥:中国科学技术大学.
张红,陈丹玲,翟明国,等,2015.南秦岭桂林沟斑岩型钼矿Re-Os同位素年代学及其构造意义研究[J].岩石学报,31(7):2023-2037.
赵辛敏,郭周平,白赟,2015.矽卡岩型白钨矿矿床研究进展[J].中国地质调查,2(1):9-13.
朱玉娣,2011.浙江桐村斑岩钼(铜)矿床岩浆岩特征及矿床成因讨论[D].北京:中国地质大学(北京).
祝新友,王京彬,王艳丽,等,2013.石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例[J].矿床地质,32(3):533-544.
[1] 吴华浩,邵拥军,刘清泉,王智琳,张毓策,袁梓焜. 湘东北正冲金矿床成因:年代学和硫同位素制约[J]. 黄金科学技术, 2023, 31(2): 190-205.
[2] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[3] 李逸凡,李洪奎,韩学林,耿科,张玉波,陈国栋. 胶东夏甸金矿床成因:流体包裹体及同位素证据[J]. 黄金科学技术, 2021, 29(2): 184-199.
[4] 高云峰,杨兴科,阮仕琦,韩珂,张伟胜,朱伟. 南秦岭镇安西部钨矿集区控矿构造特征及找矿标志[J]. 黄金科学技术, 2019, 27(4): 489-496.
[5] 王伟峰,王泽琳,柳世强,张沛. 南秦岭丁—马金汞锑矿带成矿规律与找矿前景[J]. 黄金科学技术, 2019, 27(3): 305-314.
[6] 阮仕琦,杨兴科,朱伟,高云峰,韩珂. 陕西镇安西部棋盘沟钨矿区成矿流体特征研究[J]. 黄金科学技术, 2019, 27(2): 153-162.
[7] 韩珂,安乐,杨兴科,刘淑文. 数学地质方法在南秦岭汉阴黄龙金矿中的应用[J]. 黄金科学技术, 2019, 27(1): 1-14.
[8] 周振菊,陈衍景,汤好书,吴艳爽,陈正乐. 西昆仑塔什库尔干赞坎铁矿成矿物质来源的锶钕同位素约束[J]. 黄金科学技术, 2018, 26(4): 454-464.
[9] 杨龙伟, 杨兴科, 高雅宁, 何虎军, 褚娜娜, 张正民. 南秦岭汉阴县长沟金矿床三维模型与定位预测[J]. 黄金科学技术, 2018, 26(3): 270-278.
[10] 张健,杨兴科*,晁会霞,何虎军,韩珂,杨龙伟,李斌. 南秦岭石泉—汉阴北部金矿带矿化蚀变特征[J]. 黄金科学技术, 2017, 25(6): 21-30.
[11] 韩珂,杨兴科*,张健,胡国朝. 陕南汉阴黄龙金矿脆—韧性剪切带特征及其对成矿的控制作用[J]. 黄金科学技术, 2017, 25(5): 18-29.
[12] 刘开君,樊小龙,余平辉,曾亮,成志雁,马锦龙. 西秦岭不同矿带金矿床成矿流体及其物质来源探讨[J]. 黄金科学技术, 2015, 23(6): 37-47.
[13] 张永华,王建中,钱壮志,徐刚,姜超. 南秦岭白马山岩体Sr、Nd、Pb同位素组成及源区示踪[J]. 黄金科学技术, 2015, 23(5): 20-27.
[14] 王建中,钱壮志,姜超,徐刚,柳世强,唐文恒. 南秦岭白马山金矿区石英闪长岩地球化学特征及其构造意义[J]. 黄金科学技术, 2014, 22(5): 30-38.
[15] 王晓军,郭晓东,陈永福,傅扬. 陕西金龙山金矿带控矿因素分析[J]. 黄金科学技术, 2014, 22(5): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!