img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 109-122.doi: 10.11872/j.issn.1005-2518.2024.01.116

• 采选技术与矿山管理 • 上一篇    下一篇

基于改进XGBoost算法的深部巷道松动圈智能预测研究

凡兴禹(),王雪林   

  1. 核工业井巷建设集团有限公司,浙江 湖州 313000
  • 收稿日期:2023-08-11 修回日期:2023-10-31 出版日期:2024-02-29 发布日期:2024-03-22
  • 作者简介:凡兴禹(1995-),男,云南宣威人,高级工程师,从事地下巷道稳定性分析和采矿方法研究。Fanxingyu95@gmail.com

Research on Intelligent Prediction of EDZ Around Deep Tunnels Based on Improved XGBoost Algorithm

Xingyu FAN(),Xuelin WANG   

  1. Nuclear Industry Jingxiang Construction Group Co. ,Ltd. ,Huzhou 313000,Zhejiang,China
  • Received:2023-08-11 Revised:2023-10-31 Online:2024-02-29 Published:2024-03-22

摘要:

深部巷道爆破开挖后由于爆炸冲击和原位应力动态卸载耦合作用,围岩内不可避免地产生松动圈,进而影响结构的稳定性,因此对松动圈厚度进行超前预测显得非常重要。依托多座地下矿山松动圈测试作为研究对象,共获取300组有效数据样本。采用4种主流的超参数优化算法,即遗传算法(GA)、灰狼优化算法(GWO)、粒子群优化算法(PSO)和樽海鞘算法(SSA)对XGBoost算法进行优化,并以此构建4种松动圈预测混合模型。采用R2RMSEMAEMAPE指标对预测模型的性能进行对比分析,并开展松动圈厚度参数的敏感性分析。最后,将最优的PSO-XGBoost模型应用于地下矿山运输巷道进行工程验证。结果表明:在群体规模分别为90、70、60和100时,GA-XGBoost、GWO-XGBoost、PSO-XGBoost和SSA-XGBoost模型取得了最佳的预测表现。其中,PSO-XGBoost模型在训练集和测试集中的相关系数分别为0.9244和0.8787,具有最佳的预测性能。相比基准模型(XGBoost、RF、SVM和LightGBM),优化后模型松动圈的预测精度和性能均得到显著提升。巷道当量直径(TD)和围岩地质强度指标(GSI)对松动圈厚度的影响最为显著,垂直主应力也具有明显的影响。优化后的XGBoost模型在实际工程中的应用结果显示实测值与预测值误差在10%以内,PO-XGBoost具有工程应用价值。

关键词: 松动圈, 深部巷道, 机器学习, 人工智能, 地应力, 优化XGBoost算法

Abstract:

During deep tunnelling using drill-and-blast method,excavation damaged zone (EDZ) is inevitably induced in surrounding rocks due to the coupled impacts of blast loading and dynamic initial stress unloading and thus affect the structure stability.Therefore,it is very important to predict EDZ depth before roadways excavation.Relying on the field measurements of EDZ in several underground mines as the research object,300 data samples were collected.Four mainstream hyperparametric optimization algorithms,i.e.,genetic algorithm (GA),gray wolf optimization algorithm(GWO),particle swarm optimization algorithm(PSO),and salp swarm algorithm (SSA),were used to optimize the XGBoost algorithm and to construct four hybrid models for EDZ prediction.Comparative analysis of predictive model performance was conducted in terms of R2RMSEMAE and MAPE,along with a sensitivity analysis of the influencing parameters.Finally,the optimal PSO-XGBoost model was applied to a transportation roadway in an underground mine for engineering validation.The results show that the GA-XGBoost,GWO-XGBoost,PSO-XGBoost,and SSA-XGBoost models achieve the best predictive performance with swarm sizes of 90,70,60 and 100,respectively.Among them,the PSO-XGBoost model demonstrates the best predictive performance with correlation coefficients of 0.9244 and 0.8787 in the training and testing sets,respectively.Moreover,compared to bench models(XGBoost,RF,SVM and LightGBM),both the prediction accuracy and stability of the optimized models are improved.The tunnel diameter(TD) and rock mass geological strength index(GSI) have the most significant influence on the loosened zone thickness,along with a noticeable impact from the vertical principal stress.The application results of the optimized XGBoost model in practical engineering show that the error between the measured value and the predicted value is within 10%,indicating that the PO-XGBoost is of significance for engineering application.

Key words: excavation damaged zone(EDZ), deep tunnels, machine learning, artificial intelligence, in-situ stress, optimized XGBoost algorithm

中图分类号: 

  • TD353

图1

深部巷道松动圈示意图"

图2

开展松动圈测试的地下矿山"

表1

松动圈输入和输出参数"

参数类型参数名称符号单位取值范围均值标准偏差P
输入参数地质强度指标GSI-26.43~77.6953.6613.90.049
单轴抗压强度UCSMPa64.91~155.89101.1723.630.000
垂直主应力σvMPa3.75~40.0819.3510.040.000
侧压力系数λ-0.42~2.311.500.280.000
巷道直径TDm2.80~8.354.731.010.015
装药系数PFkg/m31.12~2.001.580.180.000
抵抗线Bm0.50~1.050.760.100.031
孔间距HSm0.66~1.050.860.090.001
输出参数松动圈厚度EDZcm6.7~65.241.413.20.802

图3

松动圈输入和输出参数分布"

图4

XGBoost算法智能预测结构示意图"

图5

GA算法流程"

图6

GWO算法流程"

图7

PSO算法流程"

图8

SSA算法流程"

图9

GWO-XGBoost模型流程"

图10

GWO-XGBoost模型不同粒子数下MSE值随迭代次数变化"

表2

GWO-XGBoost模型在不同粒子数下的性能"

粒子数训练集测试集
MAEMAPERMSER2MAEMAPERMSER2
607.0317.32110.1430.90147.5937.90710.9540.8560
707.7438.33111.0430.88028.3628.99711.9260.8361
807.2027.95410.6310.88927.7788.59011.4810.8453
906.8126.9439.5220.90737.3577.49810.2840.8621
1008.2128.99411.7050.87238.8699.71412.6410.8290

图11

GA-XGBoost模型不同粒子数下MSE值随迭代次数变化"

表3

GA-XGBoost模型在不同粒子数下的预测性能"

粒子数训练集测试集
MAEMAPERMSER2MAEMAPERMSER2
607.5728.13512.1430.85738.1788.78613.1140.8233
707.4837.20110.4230.87348.0827.77711.2570.8384
807.3847.75911.5430.87027.9758.38012.4660.8357
908.3128.73412.7950.84328.9779.43313.8190.8098
1007.9438.42912.4810.85288.5789.10313.4790.8191

图12

PSO-XGBoost模型不同粒子数下MSE值随迭代次数变化"

表4

PSO-XGBoost模型在不同粒子数下的预测性能"

粒子数训练集测试集
MAEMAPE/%RMSER2MAEMAPE/%RMSER2
605.2315.5137.1430.92445.5435.8447.5720.8787
705.7415.7347.4550.92126.0816.0787.9020.8752
805.8285.9457.5430.91896.1786.3027.9960.8731
906.3216.7129.3650.90236.7127.1159.9270.8573
1005.9346.2948.0110.91236.2986.6728.4920.8670

图13

SSA-XGBoost模型不同粒子数下MSE值随迭代次数变化"

表5

SSA-XGBoost模型在不同粒子数下的预测性能"

粒子数训练集测试集
MAEMAPERMSER2MAEMAPERMSER2
608.2138.73312.4660.86298.6249.17013.0890.8208
707.4267.98610.9620.88117.7978.38511.5010.8374
807.1327.32910.5430.88567.4897.69511.0700.8416
908.0128.34511.6070.87438.4138.76212.1870.8313
1007.0877.0129.9140.89337.4417.36310.4100.8496

图14

不同模型预测值与真实值对比"

图15

不同模型的性能评价指标比较"

图16

松动圈厚度影响因素敏感性分析"

表6

松动圈预测值与实测值比较"

测试点输入参数输出参数误差/%
GSIUCS/MPaσv/MPaλTD/mPF/(kg·m-3B/mHS/m实测值/cm预测值/cm
Test-171137.412.41.353.11.560.650.5515.3213.879.5
Test-272145.812.41.353.11.500.650.5513.4314.528.1
Test-352101.512.41.353.11.320.800.6722.5623.835.6
Test-45194.812.41.353.11.350.800.6723.7522.266.3
Test-53687.912.41.353.11.181.000.8535.1238.018.2
Test-64090.112.41.353.11.201.000.8532.5434.646.5
Chen T Q, Guestrin C,2016.XGBoost:A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco:Association for Computing Machinery: 785-794.
Cortés-Caicedo B, Grisales-Noreña L F, Montoya O D,2022.Optimal selection of conductor sizes in three-phase asymmetric distribution networks considering optimal phase-balancing:An application of the salp swarm algorithm[J].Mathematics,10(18):3327.
Holland J H,1992.Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology,Control,and Artificial Intelligence[M].Cambridge:MIT Press.
Hong Z X, Tao M, Wu C Q,et al,2023.The spatial distribution of excavation damaged zone around underground roadways during blasting excavation[J].Bulletin of Engineering Geology and the Environment,82(4):155.
Hu Jun, Wang Kaikai, Xia Zhiguo,2014.Support vector machine(SVM)prediction of roadway surrounding rock loose circle thickness optimized by layered fish [J]. Metal Mine,43(11):31-34.
Kennedy J, Eberhart R,1995.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Perth:IEEE.
Li S J, Feng X T, Li Z,et al,2012.Evolution of fractures in the excavation damaged zone of a deeply buried tunnel during TBM construction[J].International Journal of Rock Mechanics and Mining Sciences,55:125-138.
Liu Gang, Xiao Yongzhuo, Zhu Junfu,et al,2021.Overview on theoretical calculation method of broken rock zone[J].Journal of China Coal Society,46(1):46-56.
Liu Meng, Tang Hai, Ma Yujie,et al,2022.Measurement of loose zone of tunnel surrounding rock based on apparent resistivity method[J].Mineral Engineering Research,37(4):58-64.
Mirjalili S, Mirjalili S M, Lewis A,2014.Grey wolf optimizer[J]. Advances in Engineering Software,69:46-61.
Perras M A, Diederichs M S,2016.Predicting excavation damage zone depths in brittle rocks[J].Journal of Rock Mechanics and Geotechnical Engineering,8(1):60-74.
Qiao S, Cai Z, Xu P,et al,2021.Investigation on the scope and influence factors of surrounding rock loose circle of shallow tunnel under bias pressure:A case study[J]. Arabian Journal of Geosciences,14(15):1428.
Sun Q, Ma F, Guo J,et al,2021.Excavation-induced deformation and damage evolution of deep tunnels based on a realistic stress path[J].Computers and Geotechnics,129:103843.
Tang Dengzhi, Bai Genming, Chen Shuang,et al,2023.Research on influencing factors and prediction of rockburst in deep-buried tunnel[J].Sichuan Hydropowder,42(2):11-17.
Wang H W, Jiang Y, Xue S,et al,2015.Assessment of excavation damaged zone around roadways under dynamic pressure induced by an active mining process[J].International Journal of Rock Mechanics and Mining Sciences,77:265-277.
Wang R, Deng X, Meng Y,et al,2019.Case study of modified H-B strength criterion in discrimination of surrounding rock loose circle[J]. KSCE Journal of Civil Engineering,23(3):1395-1406.
Wang Xu, Li Xiaomeng,2023.Research on the present situation and development trend of loose zone test technology for roadway surrounding rock[J].Coal and Chemical Industry,46(1):4-7.
Wang Yong, Wu Aixiang, Yang Jun,et al,2023.Progress and prospective of the mining key technology for deep metal mines[J].Chinese Journal of Engineering,45(8):1281-1292.
Xie Heping, Gao Feng, Ju Yang,2015.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178.
Xie Q, Peng K,2019.Space-time distribution laws of tunnel excavation damaged zones (EDZs) in deep mines and EDZ prediction modeling by random forest regression[J].Advances in Civil Engineering,(7):6505984.
Yang J H, Yao C, Jiang Q,et al,2017.2D numerical analysis of rock damage induced by dynamic in-situ stress redistribution and blast loading in underground blasting excavation[J].Tunnelling and Underground Space Technology,70:221-232.
Yang X S,2021.Genetic Algorithms[M].New York:Academic Press.
Yu Tao, Zhu Ningbo, Yao Zhigang,et al,2023.Stability analysis and control of tunnel excavation in deep buried horizontal stratum[J].Journal of Safety Science and Technology,19(4):93-99.
Zhou J, Li X B,2011.Evaluating the thickness of broken rock zone for deep roadways using nonlinear SVMs and multiple linear regression model[J].Procedia Engineering,26:972-981.
Zhu Zhijie, Zhang Hongwei, Chen Ying,2014.Prediction model of loosening zones around roadway based on MPSO-SVM [J].Computer Engineering and Applications,50(12):1-5.
胡军,王凯凯,夏治国,2014.分层鱼群优化支持向量机预测巷道围岩松动圈厚度[J].金属矿山,43(11):31-34.
刘刚,肖勇卓,朱俊福,等,2021.围岩松动圈理论计算方法的评述与展望[J].煤炭学报,46(1):46-56.
刘蒙,唐海,马谕杰,等,2022.基于视电阻率法测试技术的隧道围岩松动圈测定[J].矿业工程研究,37(4):58-64.
唐登志,白根铭,陈爽,等,2023.深埋隧道岩爆影响因素及其预测研究[J].四川水力发电,42(2):11-17.
王旭,李小萌,2023.巷道围岩松动圈测试技术现状及发展趋势研究[J].煤炭与化工,46(1):4-7.
王勇,吴爱祥,杨军,等,2023.深部金属矿开采关键理论技术进展与展望[J].工程科学学报,45(8):1281-1292.
谢和平,高峰,鞠杨,2015.深部岩体力学研究与探索[J].岩石力学与工程学报,34(11):2161-2178.
余涛,朱宁波,姚志刚,等,2023.深埋水平岩层隧道开挖稳定性分析及控制[J].中国安全生产科学技术,19(4):93-99.
朱志洁,张宏伟,陈蓥,2014.基于MPSO-SVM巷道围岩松动圈预测研究[J].计算机工程与应用,50(12):1-5.
[1] 李地元, 杨博, 刘子达, 刘永平, 赵君杰. 基于集成树算法的岩石黏聚力和内摩擦角预测方法[J]. 黄金科学技术, 2024, 32(5): 847-859.
[2] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[3] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[4] 姜志宏, 陈澳. 融合全监督学习的半监督矿石粒度预测算法[J]. 黄金科学技术, 2024, 32(3): 539-547.
[5] 许方颖, 邹艳红, 易卓炜, 杨福强, 毛先成. 基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例[J]. 黄金科学技术, 2023, 31(5): 721-735.
[6] 方博扬,赵国彦,马举,陈立强,简筝. Adaboost集成学习优化的巷道围岩松动圈预测研究[J]. 黄金科学技术, 2023, 31(3): 497-506.
[7] 李光,马凤山,郭捷,邹龙,寇永渊. 金川二矿区地应力特征及其对巷道变形破坏的影响研究[J]. 黄金科学技术, 2021, 29(6): 817-825.
[8] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[9] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[10] 姜丹,王李管. 地下铲运机自主铲装技术现状及发展趋势[J]. 黄金科学技术, 2021, 29(1): 35-42.
[11] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[12] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
[13] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[14] 廖智勤, 王李管, 何正祥. 基于EEMD和关联维数的矿山微震信号特征提取和分类[J]. 黄金科学技术, 2020, 28(4): 585-594.
[15] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!