img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (6): 990-1003.doi: 10.11872/j.issn.1005-2518.2023.06.143

• 采选技术与矿山管理 • 上一篇    下一篇

有色金属产业与制造业的产业关联:作用方向、关联程度与网络特征

刘立刚1,2(),黄亚旦2()   

  1. 1.赣州市民营经济研究中心,江西 赣州 341000
    2.江西理工大学经济管理学院,江西 赣州 341000
  • 收稿日期:2022-10-12 修回日期:2023-10-25 出版日期:2023-12-31 发布日期:2024-01-26
  • 通讯作者: 黄亚旦 E-mail:255148298@qq.com;hyd2563770839@163.com
  • 作者简介:刘立刚(1976-),男,江西赣州人,教授,硕士生导师,从事区域发展与营商环境研究工作。255148298@qq.com
  • 基金资助:
    江西省社会科学研究规划重点课题“江西有色金属产业转型升级的创新驱动路径研究”(15SKJD24)

Industrial Correlation Between Non-ferrous Metal Industry and Manufactu-ring Industry:Direction of Action,Degree of Correlation and Network Characteristics

Ligang LIU1,2(),Yadan HUANG2()   

  1. 1.Ganzhou City Private Economy Research Center, Ganzhou 341000, Jiangxi, China
    2.School of Economics and Management, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
  • Received:2022-10-12 Revised:2023-10-25 Online:2023-12-31 Published:2024-01-26
  • Contact: Yadan HUANG E-mail:255148298@qq.com;hyd2563770839@163.com

摘要:

有色金属产业处于整个制造业产业链的最上游,而制造业的发展与国民经济息息相关,因此有色金属产业发展状况如何影响制造业已成为学术界和产业界的重要议题。运用投入产出理论和复杂网络理论,构建了有色金属产业和制造业的产业关联网络,对现阶段我国有色金属产业的关联特征和网络结构进行了相对定量统计,从作用方向、关联程度和网络特征3个方面全面分析我国有色金属产业与制造业的产业关联。研究结果表明:(1)在作用方向上,有色金属产业对下游制造业的前向关联更明显,即推动作用大于拉动作用;(2)在关联程度上,与有色金属产业有较大直接消耗的前10名制造业部门中,有色金属压延加工品部门对输配电及控制设备部门的关联作用最明显;(3)在网络特征上,有色金属产业内部,有色金属矿采选部门的调控能力更强,但缺乏资源的输入输出;有色金属压延加工品部门是有色金属产业的核心部门,对制造业的价值最大;制造业内部,输配电及控制设备的各项指标表现良好,其核心地位处于上升期。

关键词: 有色金属产业, 制造业, 复杂网络理论, 产业关联, 上下游, 投入产出

Abstract:

As the basic industry of the manufacturing industry,how the non-ferrous metal industry affects the manufacturing industry has become an important issue in both academia and industry. Using the input-output theory and complex network theory,an industrial correlation network between the non-ferrous metal industry and manufacturing industry was constructed based on the non-ferrous metal industry and manufacturing data in the input-output table from 2017 to 2020. The relative quantitative statistical analysis was conducted on the correlation characteristics and network structure of China’s non-ferrous metal industry at the current stage,and the industrial correlation between China’s non-ferrous metal industry and manufacturing industry was comprehensively analyzed from three aspects of action direction,correlation degree and network characteristics. The research results show that:(1)In the direction of action,the non-ferrous metal industry has a more obvious forward correlation with the downstream manufacturing industry,that is,the driving effect is greater than the pulling effect. (2)In the degree of correlation,among the top10 manufacturing sectors that have a significant direct consumption with the non-ferrous metal industry,the non-ferrous metal rolling and processing products sector has the most obvious correlation with the tansmission,distribution and control equipment sector.(3)In terms of network characteristics,within the non-ferrous metal industry,the non-ferrous metal mining and dressing department has stronger control capabilities but lacks the input and output of resources.The non-ferrous metal rolling processed products department is the core department of the non-ferrous metal industry,with the greatest value to the manufacturing industry. Within the manufacturing industry,the current role of the resource processing industry is obvious,and the core position of the mechanical and electronic manufacturing industry is on the rise.

Key words: non-ferrous metal industry, manufacturing, complex network theory, industrial correlation, ups-tream and downstream, input and output

中图分类号: 

  • F270

表1

产业关联各指标定义及计算"

指标定义计算公式
直接消耗系数j部门每生产1单位的总产出对i部门直接消耗数量的比重aij=xijXj(i,j=1,2,,n)
直接分配系数i个部门的总产出中分配给j部门使用部分的比重xijXi(i,j=1,2,,n)
感应度系数

各部门每增加一个单位最终使用时,某一部门因受到相关部门最终使用量

的变化而为其他部门提供的产出量

j=1nAij1ni=1nj=1nAij(i,j=1,2,?,n)
影响力系数

某一个产品部门增加一个单位最终产品时,对其他部门所产生的生产需求变动

程度

i=1nAij1ni=1nj=1nAij(i,j=1,2,?,n)
节点度入度:由其他节点出发指向某一节点的边数-
出度:由某一节点出发指向其他节点的边数-
聚集系数所有节点的聚类系数之和/节点数目CCN
平均路径长度任意2个节点间距离的平均值112N(N-1)ijdij
网络密度实际存在的边数/最大可能存在的边数MN×N-N
中介中心度

从节点i到节点k的最短路径数目中经过节点i的最短路径数与ik

所有的最短路径数之比

j<kgik(i)gik
接近中心度节点ij间距离的倒数11jNdij

表2

相关指标描述性统计"

部门名称平均直接消耗系数平均直接分配系数影响力系数感应力系数
制造业0.24950.15341.20791.8328
有色金属矿采选产品0.07950.44940.71300.6914
有色金属及其合金0.17010.28630.94090.9037
有色金属压延加工品0.04730.24571.13830.5721

表3

有色金属产业各部门和制造业整体直接消耗系数和直接分配系数计算结果"

部门名称直接消耗系数直接分配系数
有色金属矿采选产品0.00140.2261
有色金属及其合金0.02160.5913
有色金属压延加工品0.02360.8131

表4

2020年有色金属产业与制造业的影响力系数、感应度系数结果"

部门名称影响力系数感应度系数
有色金属矿采选产品0.71300.6914
有色金属及其合金0.94090.9037
有色金属压延加工品1.13830.5721
制造业1.20791.8328

表5

2020年有色金属产业3部门和制造业3部门直接消耗系数结果"

部门名称有色金属矿采选产品有色金属及其合金有色金属压延加工品轻纺工业资源加工业机械、电子制造业
有色金属矿采选产品0.04260.22580.049800.00390.0006
有色金属及其合金0.00790.17660.47700.00290.00960.0284
有色金属压延加工品0.00070.01800.14760.00270.00300.0347
轻纺工业0.01140.00910.01130.22640.03940.0174
资源加工业0.10280.07360.02200.04730.50970.1001
机械、电子制造业0.08840.05600.01630.01350.06760.3735

表6

2020年有色金属产业3部门和制造业3部门直接分配系数"

部门名称有色金属矿采选产品有色金属及其合金有色金属压延加工品轻纺工业资源加工业机械、电子制造业
有色金属矿采选产品0.04261.29940.227600.16740.0584
有色金属及其合金0.00140.17660.37900.03660.07160.4832
有色金属压延加工品0.00020.02260.14760.04370.02780.7420
轻纺工业0.00020.00070.00070.22640.02300.0232
资源加工业0.00240.00990.00240.08100.50970.2288
机械、电子制造业0.00090.00330.00080.01010.02960.3735

表7

2020年有色金属产业3部门和制造业3部门感应度系数和影响力系数"

部门名称感应度系数影响力系数
有色金属矿采选产品0.77960.7475
有色金属及其合金1.01921.0022
有色金属压延加工品0.63811.2265
轻纺工业0.75940.7186
资源加工工业1.63151.2150
机械、电子制造业1.17221.0902

表8

与有色金属产业联系密切的前10名制造业部门"

有色金属产业部门制造业部门直接消耗系数
有色金属压延加工品电线、电缆、光缆及电工器材0.7154
有色金属及其合金电线、电缆、光缆及电工器材0.3844
有色金属及其合金工艺美术品0.1772
有色金属及其合金电池0.1433
有色金属压延加工品输配电及控制设备0.1317
有色金属及其合金其他制造产品0.1143
有色金属压延加工品电机0.1121
有色金属及其合金其他电气机械和器材0.1064
有色金属压延加工品文教、体育和娱乐用品0.0804
有色金属及其合金汽车零部件及配件0.0780

表9

2020年有色金属产业和制造业的关联网络特征指标结果"

部门入度出度聚类系数平均路径长度网络密度接近中心度中介中心度
有色金属矿采选产品77140.28982.90.10980.4462512.8286
有色金属及其合金737440.5570141.4183
有色金属压延加工品339420.564643.0532
轻纺工业2071903970.302780.9531
资源加工业2433285710.5489174.0312
机械电子制造业4623287900.3016108.3437

图1

2017年有色金属产业和制造业产业关联网络"

图2

2018年有色金属产业和制造业产业关联网络"

图3

2019年有色金属产业和制造业产业关联网络"

图4

2020年有色金属产业和制造业产业关联网络"

表10

2017—2020年有色金属产业对典型制造业各项网络特征指标统计"

指标部门名称指标值
2017201820192020
节点度有色金属矿采选产品14182014
有色金属及其合金41424544
有色金属压延加工品39414242
电线、电缆、光缆及电工器材29312631
工艺美术品11101414
电池25242323
输配电及控制设备37373739
其他制造产品23222023
电机27293131
其他电气机械和器材20222119
文教、体育和娱乐用品18171622
汽车零部件及配件19212119
入度有色金属矿采选产品79137
有色金属及其合金7777
有色金属压延加工品3433
电线、电缆、光缆及电工器材15171017
工艺美术品1091313
电池13141311
输配电及控制设备14151314
其他制造产品21201721
电机13141614
其他电气机械和器材16181614
文教、体育和娱乐用品16151520
汽车零部件及配件11131112
出度有色金属矿采选产品7977
有色金属及其合金34353837
有色金属压延加工品36373939
电线、电缆、光缆及电工器材14141614
工艺美术品1111
电池12101012
输配电及控制设备23222425
其他制造产品2232
电机14151517
其他电气机械和器材4455
文教、体育和娱乐用品2212
汽车零部件及配件88107
聚类系数整体0.29400.29890.32760.2898
平均路径长度整体2.9662.6792.8552.900
网络密度整体0.10700.10440.11550.1098
接近中心度有色金属矿采选产品0.44750.46860.45080.4462
有色金属及其合金0.55480.55780.59180.5570
有色金属压延加工品0.56250.55410.59180.5646
电线、电缆、光缆及电工器材0.30220.33200.37990.3063
工艺美术品0000
电池0.29890.31660.32220.3029
输配电及控制设备0.37680.41840.44390.3773
其他制造产品110.20281
电机0.35680.37270.39910.3578
其他电气机械和器材0.21890.27330.29590.2704
文教、体育和娱乐用品0.2201100.2448
汽车零部件及配件0.30570.32930.37340.3074
中介中心度有色金属矿采选产品499.4022280.8145451.4450512.8286
有色金属及其合金135.859562.1322129.6308141.4183
有色金属压延加工品49.632445.498564.721843.0532
电线、电缆、光缆及电工器材77.358771.151535.040583.4817
工艺美术品0000
电池48.587760.976458.229938.3374
输配电及控制设备155.5555221.2551174.7908184.9796
其他制造产品12.464410.512720.91247.9636
电机37.040058.025352.490984.6571
其他电气机械和器材8.338517.125614.383315.5269
文教、体育和娱乐用品13.87933.6548023.3179
汽车零部件及配件101.5303139.9243103.956893.8799
An Lei,2020.Research on the Construction and Application of the China 1987—2017 Inter-year Dynamic Input-Output Table[D].Kunming:Yunnan University of Finance and Economics.
Cassi L, Morrison A, Ter Wal A L J,2012.The evolution of trade and scientific collaboration networks in the global wine sector:A longitudinal study using network analysis[J].Economic Geography,88(3):311-334.
Chen Hong,2010.Research on the Contribution of Real Estate Industry to the Development of Local Economy in Jilin Province[D].Changchun:Jilin Institute of Architecture and Engineering.
Chen Menggen, Zhang Xin,2022.A framework of digital economy factor accounting and its application[J].Statistical Research,39(8):3-20.
Ding Hegen,2020.An analysis of China’s media-related industries and their trend based on input-output table[J].Journalism and Communication,27(11):57-75,127.
Fan Jin, Wan Wei, Yuan Xiaohui,et al,2019.Evolution trend and structural decomposition of China’s green value-added during forty years of reform and opening-up[J].Chinese Journal of Population,Resource and Envoronment,29(10):79-89.
Huang Xianhai, Zhu Zhujun,2021.The mechanism and path sele-ction of producer services to promote the high-quality deve-lopment of manufacturing industry[J].Reform,(6):17-26.
Jia Mingxing,2019.A review of nonferrous metals industry achievements in China(1949-2019) and prospects for the future[J].The Chinese Journal of Nonferrous Metals,29(9):1801-1808.
Li Jianjun, Ren Jingyi,2016.Industrial correlation and effect of cultural creative industry:A case study of Shanghai[J].Shanghai Journal of Economics,(11):90-101.
Li Lianyou, Li Bin,2012.The contributions based on the input-output analysis of Beijing culture and creative industry[J].Journal of Central University of Finance and Economics,(6):86-91.
Li Qi, Zheng Minggui, Luo Yuwen,2022.Research on China’s rare earth trade security(1992—2018)—Based on complex network analysis method[J].Chinese Rare Earths,43(1):147-158.
Li Wei, Yang Zijian, Zou Junyi,2009.Accelerating the adjustment of nonferrous metals industry and promoting economic growth[J].Macroeconomic Management,(10):54-55.
Lin Weijian, Zhang Bowen, Wang Weihua,2022.Discussion of materials science development trend through climate change,manufacturing update,national security and materials genome initiative[J].Bulletin of Chinese Academy of Sciences,37(3):336-342.
Liu Bin, Wei Qian, Yue Lü,et al,2016.Servitization of manufacturing and value chain upgrading[J].Economic Research Journal,51(3):151-162.
Liu Mingkai, Zhang Hongyan, Wang Xinyu,2020.Research on the correlation measurement and development path planning of non-ferrous metals industry chain in Guangxi[J].Natural Resource Economics of China,33(12):65-74.
Rui Lun,2020.Driving factors and coordination mechanism for the development of competitive edge of Chinese high-end manufacturing enterprises[J].Journal of Shenzhen University(Humanities and Social Sciences),37(6):83-94.
Ma Ruowei, Zhou Meng, Ding Xin,2023.Options and comparisons for takeover banks in a crisis:From a complex network perspective of interbank market[J].The Theory and Practice of Finance and Economics,44(2):2-8.
Mayhew B H, Levinger R L,1976.Size and the density of interaction in human aggregates[J].American Journal of Sociology,82(1):86-110.
Schiavo S, Reyes J, Fagiolo G,2010.International trade and financial integration:A weighted network analysis[J].Quantitative Finance,10(4):389-399.
Shao Huaming, Ma Yongtan, Zhu Tao,2017.Measurement of stability of stock market and its mechanism:From complex network structure perspective[J].Finance and Economics,(5):54-66.
Si Zengchuo, Wang Xuefeng,2015.Industry relevancy evolution and key path identification in commercial circulation industry development:Case study on China’s hotel and catering industry[J].Journal of Business Economics,(2):18-26.
Sun Yanan, Liu Huajun, Liu Chuanming,et al,2016.Research on spatial association of provinces carbon emissions and its effects in China[J].Shanghai Journal of Economics,(2):82-92.
Wang Tong’an,2014.Research on the general feature of Chinese industrial structure based on social network analysis[J].Science Research Management,35(7):124-129.
Wu Yiding, Chen Cheng,2013.Study on financial characteristics and risk sources of nonferrous metals industry[J].Com-munication of Finance and Accounting,(14):120-122.
Xia Ming, Zhang Hongxia,2013. Input-Output Analysis—Theories,Methods and Applications[M].Beijing:China Renmin University Press.
Xing Lizhi,2012.Analysis of regional industrial structure model based on complex networks theory[J].Journal of Industrial Technological Economics,31(2):19-29.
Xu Xianchun, Liu Qiyun,2002.Input-Output Theory and Practice in China[M].Beijng:China Statistics Press.
Xuan Siyuan, Yu Yongze,2021.Biased development,fiscal decentralization and the delayed development of producer services in China[J].Forum of World Economics and Politics,(4):146-172.
Xun Yang, Huang Qian, Cao Meijuan,et al,2022.The impact of COVID-19 on and the post-pandemic high-quality development of sports industry from the perspective of industrial relevance structure[J].Journal of Chengdu Sport University,48(1):64-72.
Yang Jin, Xie Ruolin,2020.Research on the key factors and path of transformation and upgrading of equipment manufacturing industry driven by disruptive innovation[J].Forum on Science and Technology in China,(11):74-82,109.
Yuan Xiaofeng, Gui Weihua, Chen Xiaofang,et al.,2018.Transforming and upgrading nonferrous metal industry with artificial intelligence[J].Strategic Study of Chinese Academy of Engineering,20(4):59-65.
Zhang Hao,2021.Study on the correlation effect of China’s nonferrous metals industry[J].World Nonferrous Metals,(13):176-177.
Zhao Bingxin, Zhang Jianghua,2013.Introduction to Industrial Network Theory[M].Beijing:Economic Science Press.
Zhao Jingwen,2017.Analysis of the Linkage Effect of Yunnan Nonferrous Metals Industry[D].Kunming:Yunnan University of Finance and Economics.
Zhao Jingwen, Liu Chunxue, Zhang Qinli,2017.Analysis of the correlation degree and influence of nonferrous metal industry in Yunnan Province[J].China Mining Magazine,26(2):66-70.
Zhao Zhe, Zeng Chen, Cheng Yijiao,2020.The spillover effect of traffic network on intensive land use:A case study in Beijing-Tianjin-Hebei urban agglomeration[J].Economic Geography,40(7):174-183.
Zhou Dapeng,2021.Research on the influence of servitization on overseas M&A of Chinese enterprises under the new development pattern[J].World Economy Studies,(8):107-119,137.
安蕾,2020.中国1987—2017年度间动态投入产出表的编制及应用[D].昆明:云南财经大学.
陈红,2010.房地产业对吉林省地方经济发展贡献研究[D].长春:吉林建筑工程学院.
陈梦根,张鑫,2022.数字经济要素投入核算框架及应用研究[J].统计研究,39(08):3-20.
丁和根,2020.我国传媒产业关联及其演化趋势分析——基于投入产出表的实证研究[J].新闻与传播研究,27(11):57-75,127.
范金,万伟,袁小慧,等,2019.改革开放40年中国绿色增加值演化趋势与结构分解[J].中国人口·资源与环境,29(10):79-89.
黄先海,诸竹君,2021.生产性服务业推动制造业高质量发展的作用机制与路径选择[J].改革,(6):17-26.
贾明星,2019.七十年辉煌历程 新时代砥砺前行——中国有色金属工业发展与展望[J].中国有色金属学报,29(9):1801-1808.
李建军,任静一,2016.文化创意产业的产业关联与波及效应研究——基于上海市投入产出表的实证分析[J].上海经济研究,(11):90-101.
李连友,李宾,2012.基于投入产出方法的北京市文化创意产业对经济贡献分析[J].中央财经大学学报,(6):86-91.
李期,郑明贵,罗宇文,2022.中国稀土贸易安全研究(1992—2018)——基于复杂网络分析方法[J].稀土,43(1):147-158.
李威,杨子健,邹俊义,2009.加快有色金属产业调整 促进经济增长[J].宏观经济管理,(10):54-55.
林伟坚,张博文,汪卫华,2022.从全球气候变化、制造业产业升级、国家安全及材料基因工程维度探讨材料科学发展趋势[J].中国科学院院刊,37(3):336-342.
刘斌,魏倩,吕越,等,2016.制造业服务化与价值链升级[J].经济研究,51(3):151-162.
刘明凯,张红艳,王新宇,2020.广西有色金属产业链关联测度与发展路径规划研究[J].中国国土资源经济,33(12):65-74.
伦蕊,2020.中国高端制造企业竞争力生成的驱动因素与协同机制[J].深圳大学学报(人文社会科学版),37(6):83-94.
马若微,周萌,丁鑫,2023.危机时接管银行的选择与比较——基于银行间市场复杂网络模型的研究[J].财经理论与实践,44(2):2-8.
邵华明,马永谈,朱涛,2017.股票市场稳定性测度及其作用机制——基于复杂网络模型视角的分析[J].财经科学,(5):54-66.
司增绰,王雪峰,2015.商贸流通业成长的产业关联演变与关键路径识别——以我国住宿和餐饮业为例的研究[J].商业经济与管理,(2):18-26.
孙亚男,刘华军,刘传明,等,2016.中国省际碳排放的空间关联性及其效应研究——基于SNA的经验考察[J].上海经济研究,(2):82-92.
王铜安,2014.基于社会网络视角的产业结构总体特征研究[J].科研管理,35(7):124-129.
吴一丁,陈成,2013.有色金属行业财务特征分析及风险源研究[J].财会通讯,(14):120-122.
夏明,张红霞,2013.投入产出分析——理论、方法与数据[M].北京:中国人民大学出版社.
邢李志,2012.基于复杂网络理论的区域产业结构网络模型研究[J].工业技术经济,31(2):19-29.
许宪春,刘起运,2002.中国投入产出理论与实践[M].北京:中国统计出版社.
宣思源,余泳泽,2021.偏向型开放、财政分权与中国生产性服务业发展滞后[J].世界经济与政治论坛,(4):146-172.
荀阳,黄谦,曹美娟,等,2022.冲击解析及应对:新冠疫情影响下的体育产业高质量发展研究——基于产业关联结构的视角[J].成都体育学院学报,48(1):64-72.
杨瑾,解若琳,2020.颠覆式创新驱动装备制造业转型升级的关键影响因素及路径[J].中国科技论坛,(11):74-82,109.
袁小锋,桂卫华,陈晓方,等,2018.人工智能助力有色金属工业转型升级[J].中国工程科学,20(4):59-65.
张昊,2021.中国有色金属产业关联效应研究[J].世界有色金属,(13):176-177.
赵炳新,张江华,2013.产业网络理论导论[M].北京:经济科学出版社.
赵婧雯,2017.云南有色金属产业联动效应分析[D].昆明:云南财经大学.
赵婧雯,刘春学,张钦礼,2017.云南有色金属产业关联程度及影响分析[J].中国矿业,26(2):66-70.
赵哲,曾晨,程轶皎,2020.交通路网的空间外溢性对土地集约利用的影响——以京津冀城市群为例[J].经济地理,40(7):174-183.
周大鹏,2021.新发展格局下制造业服务化对中国企业海外并购的影响研究[J].世界经济研究,(8):107-119,137.
[1] 朱文兴,胡恒祺,徐水太. 全球稀有矿产品贸易格局演化及我国供应安全研究[J]. 黄金科学技术, 2022, 30(6): 877-890.
[2] 刘贻玲,郑明贵. 中国有色金属产业结构升级演进研究[J]. 黄金科学技术, 2022, 30(4): 632-640.
[3] 徐水太, 马彩薇, 朱文兴. “一带一路”稀土贸易网络结构及演化研究[J]. 黄金科学技术, 2022, 30(2): 196-208.
[4] 许礼刚,王妤歆,关景文. 产业链安全视阈的稀土资源开发负外部性反哺机制研究[J]. 黄金科学技术, 2019, 27(4): 609-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙浩杰,杨俊彦,李雪林,徐忠敏,谷建国,游世辉. 黄金矿山格子型球磨机节能降耗应用研究[J]. 黄金科学技术, 2023, 31(6): 1044 -1050 .
[2] 赵子瑜, 毕林. 矿边智能:智能矿山边缘侧建设新趋势[J]. 黄金科学技术, 2023, 31(6): 964 -977 .
[3] 郑明贵, 顾东明, 陶思敏, 陈美玲. 资源型企业数字化转型的组态路径研究[J]. 黄金科学技术, 2023, 31(6): 978 -989 .
[4] 孟文文,李鹏. 黄金行业尾矿处置政策与综合利用实践[J]. 黄金科学技术, 2023, 31(6): 1023 -1034 .
[5] 海龙, 冯丽鑫, 谭世林, 吕勇博. 根土复合体加固露天矿山排土场边坡研究[J]. 黄金科学技术, 2023, 31(6): 911 -918 .
[6] 陈美玲,徐水太,顾东明. 多要素驱动资源型城市转型的路径研究——基于TOE框架的fsQCA分析[J]. 黄金科学技术, 2023, 31(6): 1004 -1013 .
[7] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873 -887 .
[8] 许云美,袁利伟,龙皓楠. 干堆尾矿库稳定性影响因素的敏感性分析[J]. 黄金科学技术, 2023, 31(6): 1014 -1022 .
[9] 顾清华, 杜艺凡, 李萍丰, 王丹. 基于加权双向特征融合的矿区道路落石检测[J]. 黄金科学技术, 2023, 31(6): 953 -963 .
[10] 赵荣艳,李天恩,张玲. 四川独狼沟金矿浮选尾矿综合回收金、钨和石英砂试验研究[J]. 黄金科学技术, 2023, 31(6): 1035 -1043 .