黄金科学技术 ›› 2018, Vol. 26 ›› Issue (1): 49-55.doi: 10.11872/j.issn.1005-2518.2018.01.049
刘强,李夕兵,梁伟章*
LIU Qiang,LI Xibing,LIANG Weizhang
摘要:
为了更合理地确定岩体质量类别,将主成分分析(PCA)与随机森林(RF)算法相结合,提出一种岩体质量分类的PCA-RF模型。选取能够充分反映岩体质量类别的5项指标进行分析,运用主成分分析法对各指标进行相关性处理,依据方差累计贡献率得出3个主成分,从而消除指标间的相关性,减少模型输入。然后采用随机森林模型对岩体质量进行分类,选用现场20组数据作为训练样本、10组数据作为测试样本,利用交叉验证的方法估计泛化误差。结果表明,该方法分类结果与实际结果较吻合,平均准确率达96.7%,同时得出岩体质量所处类别的概率分布,进一步反映岩体质量的复杂度,为工程建设提供更详细的参考依据。
中图分类号:
[ 1 ] Cai M,Kaiser P K.Visualization of rock mass classification systems[J].Geotechnical and Geological Engineering,2006,24(4):1089-1102.
[ 2 ] 蔡美峰. 岩石力学与工程[M].北京:科学出版社,2002:10-25.Cai Meifeng.Rock Mechanics and Engineering[M].Beijing:Science Press,2002:10-25. [ 3 ] 陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,21(12):1894-1900.Chen Changyan,Wang Guirong.Discussion on the interrelation of various rock mass quality classification systems at home and abroad[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(12):1894-1900. [ 4 ] 江飞飞,李向东,盛佳,等.软弱破碎岩体工程地质调查与质量评价[J].黄金科学技术,2016,24(3):94-99.Jiang Feifei,Li Xiangdong,Sheng Jia,et al.Engineering geological investigation and quality evaluation of soft fractured rock[J].Gold Science and Technology,2016,24(3):94-99. [ 5 ] 赵明阶,吴德伦.工程岩体的超声波分类及强度预测[J].岩石力学与工程学报,2000,19(1):89-92.Zhao Mingjie,Wu Delun.The ultrasonic identification of rock mass classification and rock mass strength prediction[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):89-92. [ 6 ] 董金奎,申延,邱俊刚.焦家金矿寺庄矿区岩体节理裂隙调查与矿岩稳定性分析[J].黄金科学技术,2012,20(2):58-61.Dong Jinkui,Shen Yan,Qiu Jungang.Investigation of joint fissure and analysis of ore-rock stability in Sizhuang mining of Jiaojia gold deposit[J].Gold Science and Technology,2012,20(2):58-61. [ 7 ] Palmstrom A,Broch E.Use and misuse of rock mass classification systems with particular reference to the Q-system[J].Tunneling and Underground Space Technology,2006,21(6):575-593. [ 8 ] 贾明涛,王李管.基于区域化变量及RMR评价体系的金川Ⅲ矿区矿岩质量评价[J].岩土力学,2010,31(6):1907-1912.Jia Mingtao,Wang Liguan.Evaluation of rock mass quality based on regionalization variable optimal estimation theory and RMR system in Jinchuan mine No.3[J].Rock and Soil Mechanics,2010,31(6):1907-1912. [ 9 ] 邬爱清,汪斌.基于岩体质量指标BQ的岩质边坡工程岩体分级方法[J].岩石力学与工程学报,2014,33(4):699-706.Wu Aiqing,Wang Bin.Engineering rock mass classification method based on rock mass quality index BQ for rock slope[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(4):699-706. [ 10 ] 连建发,慎乃齐,张杰坤.分形理论在岩体质量评价中的应用研究[J].岩石力学与工程学报,2001,20(增):1695-1698.Lian Jianfa,Shen Naiqi,Zhang Jiekun.Application research on fractal theory in rock mass quality evaluation[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(Supp.):1695-1698. [ 11 ] 钱兆明,任高峰,褚夫蛟,等. 基于PCA法和Fisher判别分析法的岩体质量等级分类[J].岩土力学,2016,37(增2):427-432.Qian Zhaoming,Ren Gaofeng,Chu Fujiao,et al. Rock mass quality classification based on PCA and Fisher discrimination analysis[J].Rock and Soil Mechanics,2016,37(Supp.2):427-432. [ 12 ] 李强.BP神经网络在工程岩体质量分级中的应用研究[J].西北地震学报,2002,24(3):220-224.Li Qiang.Study on the application of BP nervous network in classification of rock mass quality[J].Northwestern Seismological Journal,2002,24(3):220-224. [ 13 ] 吴肖坤,刘敦文,江帆,等.基于特征值域的可拓学理论的工程岩体质量评价[J].黄金科学技术,2015,23(2):68-74.Wu Xiaokun,Liu Dunwen,Jiang Fan,et al. Extension theory of engineering rock mass quality evaluation based on the feature range[J].Gold Science and Technology,2015,23(2):68-74. [ 14 ] 胡建华,尚俊龙,雷涛.基于RS-TOPSIS法的地下工程岩体质量评价[J].中南大学学报(自然科学版),2012,43(11):4412-4419.Hu Jianhua,Shang Junlong,Lei Tao.Rock mass quality evaluation of underground engineering based on RS-TOPSIS method[J].Journal of Central South University (Science and Technology),2012,43(11):4412-4419. [ 15 ] Breiman L. Random forests[J].Machine Learning,2001,45(1):5-32. [ 16 ] Peters J,Baets B D,Verhoest N,et al.Random forests as a tool for ecohydrological distribution modelling[J].Ecological Modelling,2007,207(2/3/4):304−318. [ 17 ] Lee S L,Kouzani A Z,Hu E J.Random forest based lung nodule classification aided by clustering[J].Computerized Medical Imaging & Graphics,2010,34(7):535-542. [ 18 ] 王茵茵,齐雁冰,陈洋,等.基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J].土壤学报,2016,53(2):342-354.Wang Yinyin,Qi Yanbing,Chen Yang,et al.Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm[J].Acta Pedologica Sinica,2016,53(2):342-354. [ 19 ] Pearson K. Principal components analysis[J].The London,Edinburgh and Dublin Philosophical Magazine and Journal,1901,6(2):566. [ 20 ] 李夕兵,朱玮,刘伟军,等.基于主成分分析法与RBF神经网络的岩体可爆性研究[J].黄金科学技术,2015,23(6):58-63.Li Xibing,Zhu Wei,Liu Weijun,et al. Research on rock mass blastability based on principal component analysis and RBF neural network[J].Gold Science and Technology,2015,23(6):58-63. [ 21 ] 周松林,茆美琴,苏建徽.基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132.Zhou Songlin,Mao Meiqin,Su Jianhui.Prediction of wind power based on principal component analysis and artificial neural network[J].Power System Technology,2011,35(9):128-132. [ 22 ] 曹正凤. 随机森林算法优化研究[D].北京:首都经济贸易大学,2014.Cao Zhengfeng. Study on Optimization of Random Forests Algorithm[D].Beijing:Capital University of Economics and Business,2014. [ 23 ] 中华人民共和国国家标准编写组.工程岩体分级标准:GB50218-94[S].北京:中国计划出版社,1995.The National Standards Compilation Group of People’s Republic of China.Standard for engineering classification of rock masses:GB50218-94[S].Beijing:China Planning Press,1995. |
[1] | 赵国彦, 胡凯译, 李洋, 刘雷磊, 王猛. 基于BWO-RF模型的岩体质量评价方法[J]. 黄金科学技术, 2024, 32(2): 270-279. |
[2] | 凡奥奇, 王万禄, 李树建, 张斌, 刘映辉, 吴浩. 基于优化组合赋权的可拓学磷矿山岩体质量评价[J]. 黄金科学技术, 2024, 32(1): 132-143. |
[3] | 邓红卫, 罗亮. 基于SMA算法优化随机森林的PPV预测模型[J]. 黄金科学技术, 2023, 31(4): 624-634. |
[4] | 方博扬,赵国彦,马举,陈立强,简筝. Adaboost集成学习优化的巷道围岩松动圈预测研究[J]. 黄金科学技术, 2023, 31(3): 497-506. |
[5] | 杨珊,李文文,陈建宏. 基于PCA-RBF网络模型的硫化矿自燃安全性研究[J]. 黄金科学技术, 2022, 30(6): 958-967. |
[6] | 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712. |
[7] | 温廷新,苏焕博. 基于MICE_RF的组合赋权—极限随机树岩爆预测模型[J]. 黄金科学技术, 2022, 30(3): 392-403. |
[8] | 谢饶青, 陈建宏, 肖文丰. 基于NPCA-GA-BP神经网络的采场稳定性预测方法[J]. 黄金科学技术, 2022, 30(2): 272-281. |
[9] | 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833. |
[10] | 高峰,吴晓东,周科平. 基于主成分分析和PSO-ELM算法的排土场稳定性预测模型[J]. 黄金科学技术, 2021, 29(5): 658-668. |
[11] | 骆正山,黄仁惠,申国臣. 基于KPCA-IPSO-LSSVM的充填管道磨损风险预测[J]. 黄金科学技术, 2021, 29(2): 245-255. |
[12] | 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929. |
[13] | 陈玉民, 王成龙, 李晓飞, 蒋翔, 赵兴东. 焦家金矿深部复杂构造下高应力岩体树脂锚索联合支护技术[J]. 黄金科学技术, 2020, 28(5): 727-733. |
[14] | 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584. |
[15] | 陈超民,冷成彪,司国辉. 基于GIS与层次分析法的综合成矿预测——以新疆库米什地区为例[J]. 黄金科学技术, 2020, 28(2): 213-227. |
|