img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (4): 595-602.doi: 10.11872/j.issn.1005-2518.2020.04.170

• Mining Technology and Mine Management • Previous Articles     Next Articles

Study of Effect of Pulsed Microwave Assisted Grinding Process Parameters on the Ilmenite Heating Performance

Ming HOU1,4(),Jun LI1,4,Li YANG1,2,4,Peiqiang FAN5,Shenghui GUO1,2,3,4(),Yan YAN1,4   

  1. 1.Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.State International Joint Research Center of Advanced Technology for Superhard Materials,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    3.National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    4.State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    5.Yunnan Phosphate Group Co. ,Ltd. ,Kunming 650600,Yunnan,China
  • Received:2019-10-22 Revised:2020-03-26 Online:2020-08-31 Published:2020-08-27
  • Contact: Shenghui GUO E-mail:houmingkmust@163.com;1978327655@qq.com

Abstract:

Because of its light weight,high strength,and good corrosion resistance,the development and application of titanium have attracted widespread attention from Chinese and foreign scholars.The higher the content,the lower the grade of titanium concentrate that can be recovered,and it is difficult to improve the recovery rate.In order to improve the recovery efficiency of ilmenite,the heating behavior of ilmenite under pulsed microwave conditions was studied.In this study,pulsed microwave pretreatment of ilmenite was carried out using a self-made pulsed microwave device.The effects of different irradiation time,pulse microwave power,weight of ore sample and particle size of different ore samples on the heating performance of ilmenite were studied.The composition of the ore sample was analyzed by X-ray diffractometer,and the particle size of the sample was detected by a nano-laser particle size analyzer.The research results show that the heating behavior of materials in the microwave field is determined not only by the nature of the mineral itself,but also by the power of the microwave heating equipment.The temperature increase rate of ilmenite is significantly affected by the quality of the sample.At the same time,the change law shows consistency under different heating time conditions:When the mass of ilmenite is 40~60 g,the temperature increase rate reaches the maximum.The changes in the quality of ilmenite can significantly affect the heating temperature of the ore sample.Under the condition of a certain microwave power,the longer the microwave acts on the material,the higher the temperature of the ore sample.With the change of the particle size of the material,the microwave temperature showes a trend of increasing first and then decreasing.When the ore sample has a particle size of 25 mm,a weight of 40 g,an irradiation time of 30 s,and an average microwave power of 3 kW,the sample is heated to the best effect.The research in this paper is of great significance for the application of pulsed microwave in the field of grinding aid.

Key words: pulsed microwave, ilmenite, heating performance, process parameters, irradiation time, grinding aid technology

CLC Number: 

  • TD951

Table 1

Mineral composition of ilmenite(%)"

矿物成分质量分数矿物成分质量分数
TiO252.86MgO2.01
Fe35.12SiO21.86
CaO3.22其他4.93

Fig.1

Heating curve of minerals with mass of 50 g in 2 min"

Fig.2

Heating curves of mineral with different weight in different heating time"

Fig.3

Influence of microwave radiation on heating temperature"

Fig.4

Heating curve of minerals with mass of 40,50,60 g in one minute"

Table 2

Microwave heating temperature of the mineral with different grain size"

粒度/mm温度/℃粒度/mm温度/℃
224335280
1026545238
25300

Table 3

Summary of experiment conditions and corresponding results"

温度/℃试验条件温度/℃试验条件
辐照时间/s脉冲微波功率/W矿样质量/g矿样粒度/mm辐照时间/s脉冲微波功率/W矿样质量/g矿样粒度/mm
150101 0005025175301 0005025
240201 0005025250301 5005025
300301 0005025270302 0005025
330401 0005025305302 5005025
350501 0005025330303 0005025
370601 0005025155101 0004025
386701 0005025242201 0004025
398801 0005025320301 0004025
409901 0005025360401 0004025
4201001 0005025380501 0004025
4291101 0005025400601 0004025
4401201 0005025150101 0005025
90101 0002025240201 0005025
168101 0004025300301 0005025
170101 0006025326401 0005025
132101 0008025352501 0005025
95101 00010025370601 0005025
182201 0002025140101 0006025
256201 0004025234201 0006025
248201 0006025308301 0006025
185201 0008025326401 0006025
145201 00010025352501 0006025
250301 0002025360601 0006025
320301 0004025243301 000502
295301 0006025265301 0005010
210301 0008025300301 0005025
176301 00010025280301 0005035
253005025238301 0005045
110305005025
1 中国工程院.中国科学院《两院咨询报告》[M].北京:中国工程院,2012.
Chinese Academy of Engineering.Chinese Academy of Sciences.Consultation Report of Two Academy[M].Beijing:Chinese Academy of Engineering,2012.
2 杨欢,杨晓康,杜晨,等.钛及钛合金真空熔炼技术研究进展[J].世界有色金属,2019(8):1-4.
Yang Huan,Yang Xiaokang,Du Chen,et al.Recent development in researching the advanced melting processes for titanium alloy[J].World Nonferrous Metals,2019(8):1-4.
3 张喜燕,赵永庆,白晨光,等.钛合金及应用[J].北京:化工出版社,2005.
Zhang Xiyan,Zhao Yongqing,Bai Chenguang,et al.Titanium Alloy and Application[M].Beijing:Chemical Industry Press,2005.
4 朱阳戈,张国范,冯其明,等.微细粒钛铁矿的自载体浮选[J].中国有色金属学报,2009,19(3):554-560.
Zhu Yangge,Zhang Guofan,Feng Qiming,et al.Autogenous-carrier flotation of fine ilmenite[J].The Chinese Journal of Nonferrous Metals,2009,19(3):554-560.
5 杨佳,李奎,汤爱涛,等.钛铁矿资源综合利用现状与发展[J].材料导报,2003,17(8):44-46.
Yang Jia,Li Kui,Tang Aitao,et al.Comprehensive utilization of ilmenite resources present status and future prospects [J].Materials Review,2003,17(8):44-46.
6 黄会春.提高太和铁矿钛强磁选回收率的试验研究[J].金属矿山,2011,40(2):60-63.
Huang Huichun.Experimental research on titanium recovery rate in high intensity magnetic separation of Taihe iron mine [J].Metal Mine,2011,40(2):60-63.
7 李丽匣,申帅平,袁致涛,等.微细粒钛铁矿磁选回收率低原因分析[J].中国矿业,2018,27(11):141-147.
Li Lixia,Shen Shuaiping,Yuan Zhitao,et al.Loss mechanism of fine-grained ilmenite in magnetic separation [J].China Mining Magazine,2018,27(11):141-147.
8 常富强,段德华,宋龒. 生产中提高球磨机磨矿效率的方法[J]. 现代矿业,2011,27(3):81-84.
Chang Fuqiang, Duan Dehua, Song Long. Methods of improving grinding efficiency of ball mill in production [J]. Modern Mining, 2011,27(3):81-84.
9 王俊鹏,姜涛,刘亚静,等.微波预处理对钒钛磁铁矿磨矿动力学的影响[J].东北大学学报(自然科学版),2019,40(5):663-667.
Wang Junpeng,Jiang Tao,Liu Yajing,et al.Effects of microwave pretreatment on the grinding kinetics of vanadium titano-magnetite [J].Journal of Northeastern University(Natural Science),2019,40(5):663-667.
10 Mcgill S L,Walkiewicz J W,Smyres G A.The effect of power level on microwave heating of selected chemicals and minerals[J].Mrs Online Proceedings Library Archive,1988,124:247-252.
11 Walkiewicz J W,Kazonich G,Mcgill S L.Microwave heating characteristics of minerals and compounds[J].Minerals and Metallurgical Processing,1988,5(1):39-42.
12 Walkiewicz J W,Clark A E,McGill S L.Microwave-Assisted Grinding[J].IEEE Transactions on Industry Applications,1991(2):239-243.
13 廖雪峰,刘钱钱,胡途.响应曲面法优化钛铁矿微波辅助磨矿研究[J].矿产保护与利用,2016(3):40-44.
Liao Xuefeng,Liu Qianqian,Hu Tu.Experimental investigation on microwave assisted grinding of ilmenite optimized by response surface method [J].Conservation and Utilization of Mineral Resources,2016(3):40-44.
14 刘全军,熊燕琴.微波在铁矿石选择性磨细中的应用机理研究[J].云南冶金,1997,26(3):25-28.
Liu Quanjun,Xiong Yanqin.Research on application mechanism of microwave in selective grinding of iron ore [J].Yunnan Metallurgy,1997,26(3):25-28.
15 赵伟,周安宁.微波辅助磨矿对煤岩组分解离的影响[J].煤炭学报,2011,36(1):140-144.
Zhao Wei,Zhou Anning.The influence of microwave-assisted grinding on coal macerals dissociation[J].Journal of China Coal Society,2011,36(1):140-144.
16 王俊鹏,姜涛,刘亚静,等.钒钛磁铁矿微波助磨实验[J].东北大学学报(自然科学版),2017,38(11):1559-1563.
Wang Junpeng,Jiang Tao,Liu Yajing,et al.Experiment of microwave-assisted grinding on vanadium titano-magnetite [J].Journal of Northeastern University(Natural Science),2017,38(11):1559-1563.
17 白立记,苏秀娟,何春林,等.锡石多金属硫化矿微波辅助磨矿机理研究[J].矿产保护与利用,2018(6):31-36.
Bai Liji,Su Xiujuan,He Chunlin,et al.Study on microwave-assisted grinding mechanism of cassiterite-polymetallic sulfide ore [J].Conservation and Utilization of Mineral Resources,2018(6):31-36.
18 张九才.大功率脉冲微波功率频率计研究[D].成都:电子科技大学,2006.
Zhang Jiucai.Research on High Power Pulsed Microwave Power Frequency Meter[D].Chengdu:University of Ele-ctronic Science and Technology of China,2006.
19 刘全军,陈景河.微波助磨与微波助浸技术[M].北京:冶金工业出版社,2005
Liu Quanjun,Chen Jinghe.Microwave Assisted Grinding and Microwave Assisted Immersion Technology[M].Beijing:Metallurgical Industry Press,2005.
20 赵俊蔚,郑晔,邢志军.微波处理碳质金矿石技术研究[J].黄金,2008,29(3):35-38.
Zhao Junwei,Zheng Ye,Xing Zhijun.Researches on carbon-bearing gold ore treatment with microwave[J].Gold,2008,29(3):35-38.
21 彭金辉,杨显万.微波能技术新应用[M].昆明:云南科技出版社,1997.
Peng Jinhui,Yang Xianwan.New Applications of Microwave Energy Technology [M].Kunming:Yunnan Science and Technology Press,1997.
22 Whittles D N,Kingman S W,Reddish D J.Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage[J].International Journal of Mineral Processing,2003,68(1/2/3/4):71-91.
23 Jones D A, Kingman S W, Whittles D N,et al.The influence of microwave energy delivery method on strength reduction in ore samples[J].Chemical Engineering and Processing,2007,46(4):291-299.
[1] XU Tao,ZHONG Shuiping,YIN Zhigang. Study on Surface Reaction Mechanism of Pyrite in Alkaline Environment [J]. Gold Science and Technology, 2014, 22(4): 72-77.
[2] CHEN Gengqi. An Experimental Study on Auriferrous Iron Ores [J]. Gold Science and Technology, 2012, 20(5): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Dong-Cheng, XU Xiao-Feng. [J]. J4, 2010, 18(4): 47 -49 .
[2] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[3] GENG A-Jiao, DUAN Jian-Hua. Analysis on the Ore-controlling Factors and Prospecting of Manzhanggang Gold Mine[J]. J4, 2010, 18(6): 34 -37 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[6] CHEN Li-Zi, CAO Dong-Hong, YANG De-Mei. Element Geochemical Characteristics of Guloushan Ore Section in Jinlongshan Gold Mine,Shaanxi Province[J]. J4, 2011, 19(1): 28 -33 .
[7] HOU Gang, XU Zhao-Cai, WANG Ai-Beng. Geological Characteristics and Ore-exploration Significance of Benqu Deposit in Jiapigou Gold Mine[J]. J4, 2011, 19(1): 45 -48 .
[8] XU Zhongmin, ZHUANG Yukai, LUAN Zuochun. The Way of Part positive Crossing Matrix Separate out Factor Apply in Optimiz -ing Floatation Factor Test[J]. J4, 2008, 16(1): 7 -11 .
[9] DONG Chuantong YANG Zengwu  ZHAO Qingquan. The Electrical Characteristics and Prospecting Model of Jinchanggou CuMo Ore in Heilongjiang Prov ince[J]. J4, 2008, 16(1): 39 -42 .
[10] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .