img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (4): 497-504.doi: 10.11872/j.issn.1005-2518.2019.04.497

• Mining Technology and Mine Management • Previous Articles     Next Articles

Optimization Research on Stope Structural Parameters Based on Vague-RSM-AFSA Model

Guoyan ZHAO(),Zhenyang LI(),Juncheng DAI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2018-09-03 Revised:2019-04-02 Online:2019-08-31 Published:2019-08-19
  • Contact: Zhenyang LI E-mail:gy.zhao@263.net;735424518@qq.com

Abstract:

The average dip angle and thickness of a silver ore body are 70 degrees and 10 m respectively.The ore body is unstable and the surrounding rock of the hanging wall and footwall wall is relatively stable.In order to determine the optimum stope structure parameters and optimize the safety and economy of the mining scheme,a Vague-RSM-AFSA model was established to optimize the stope structural parameters.Fifteen schemes of stope structural parameters were designed based on the principle of central composite test method,and the numerical model of each scheme was established by Midas coupled FLAC3D. Stope structural parameters are related to the safety and economy of mine production.The maximum settlement displacement of stope roof,maximum horizontal displacement of pillar,mining-cutting ratio and the ore loss rate were selected as evaluation indexes based on the geological conditions,mining methods and other factors.The Vague theory can accurately express the fuzziness and uncertainty of information,the weight of each index was obtained by calculating Vague entropy of each index.Based on Vague set,the positive and negative ideal schemes within the optimum range of stope structural parameters were obtained,and the superiority of each scheme was calculated by Euclidean distance method.Response surface methodology (RSM) can accurately construct the complex non-linear response relationship between independent variables and dependent variables,response surface method (RSM) was used to establish the response surface model of stope structural parameters and superiority of various schemes in central composite test.The square R 2 of the fitting correlation coefficient of the model is 0.9766.The numerical analysis of three groups of structural parameters in the optimum range but not in the central composite test was carried out.The maximum error between the results and the response surface model is 0.0213,which shows that the established response surface model has high accuracy.Artificial fish swarm algorithms (AFSA) has a strong ability to search global extremum,and can effectively solve complex non-linear multi-objective optimization problems,the artificial fish swarm algorithm (AFSA) was used to optimize the superiority response surface model.The optimum stope structure parameters were obtained as follows: 20 m for stope height,32.8 m for stope length,16.1 m for pillar width.And the superiority is 0.2631,which is higher than the maximum superiority of 0.2271 in the central composite test,and the error between the optimization results and the numerical simulation results is 0.0037. It shows that the Vague-RSM-AFSA model has good optimization ability and high accuracy,which provides a new method for the optimization of stope structural parameters.

Key words: stope structure parameters, Vague, response surface method, artificial fish swarm algorithm, superiority degree

CLC Number: 

  • TD353

Fig.1

Flow chart of model calculation"

Fig.2

Rock mechanics test"

Table 1

Physical and mechanical parameters of rock mass"

岩石类型 密度/(kg ? m-3 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 抗压强度/MPa 弹性模量/GPa 泊松比
花岗岩 2711 6.05 22.03 3.69 53.76 7.03 0.16
板岩 2749 3.38 39.20 9.11 63.01 11.56 0.21
矿体 2926 1.52 35.33 2.54 32.49 9.71 0.21

Table 2

Factors and their levels of central composite test"

水平 因素
X 1/m X 2/m X 3/m
1 20 25 10
2 25 30 15
3 30 35 20

Table 3

Design of central composite test"

方案 X 1/m X 2/m X 3/m
1 20 25 10
2 20 25 20
3 20 30 15
4 20 35 10
5 20 35 20
6 25 25 15
7 25 30 10
8 25 30 15
9 25 30 20
10 25 35 15
11 30 25 10
12 30 25 20
13 30 30 15
14 30 35 10
15 30 35 20

Fig.3

Numerical model"

Table 4

Numerical simulation results of each scheme"

方案 Y 1/mm Y 2/mm Y 3/( × 10-3 m ? t-1 Y 4/%
1 19.68 7.13 11.33 28.57
2 18.82 5.02 11.33 44.44
3 20.11 5.73 9.44 33.33
4 21.67 8.02 8.10 22.22
5 20.98 5.21 8.10 36.36
6 19.42 5.56 10.67 37.50
7 20.94 7.87 8.89 25.00
8 20.57 5.80 8.89 33.33
9 20.17 5.31 8.89 40.00
10 21.50 5.92 7.62 30.00
11 20.15 7.32 10.22 28.57
12 19.52 5.05 10.22 44.44
13 20.74 5.88 8.52 33.33
14 22.47 8.35 7.30 22.22
15 21.89 6.57 7.30 36.36

Fig. 4

Superiority of each scheme"

Table 5

Parameters and results of verification scheme"

方案 X 1/m X 2/m X 3/m Y 1/mm Y 2/mm Y 3/( × 10-3 m ? t-1 Y 4/% 优越度y 模型结果 误差
16 20 30 20 19.81 5.18 9.44 40.00 0.1433 0.1646 0.0213
17 25 25 20 19.26 5.25 10.67 44.44 -0.0019 0.0053 0.0072
18 30 30 20 20.84 5.46 8.52 40.00 0.0765 0.0885 0.0120

Fig.5

Superiority of numerical calculation and RSM prediction"

Fig.6

Moving trajectory of the optimum stope structural parameters"

Fig.7

Transformation process and result of superiority"

Table 6

Comparison of numerical simulation results of scheme 3 and scheme 19"

方案 Y 1/mm Y 2/mm Y 3/( × 10-3 m ? t-1 Y 4/% 优越度
3 20.11 5.73 9.44 33.33 0.2271
19 20.49 5.82 8.64 32.92 0.2594
1 龙科明,王李管 .基于ANSYS-R 法的采场结构参数优化[J].黄金科学技术,2015,23(6):81-86.
Long Keming , Wang Liguan . Optimization of stope structural parameters based on ANSYS-R method[J].Gold Science and Technology,2015,23(6):81-86.
2 Zhu P K , Zhao J Q .Optimization research of stope structural parameters in upward drift cut-and-backfilling mining method[J].Advanced Materials Research,2014,1010-1012: 1454-1460.
3 Wu A X , Huang M Q , Han B ,et al . Orthogonal design and numerical simulation of room and pillar configurations in fractured stopes[J].Journal of Central South University,2014,21(8):3338-3344.
4 Liu Z X , Luo T , Li X ,et al .Construction of reasonable pillar group for undersea mining in metal mine[J]. Transactions of Nonferrous Metals Society of China,2018,28(4):757-765.
5 Bai X , Marcotte D , Simon R .Underground stope optimization with network flow method[J].Computers and Geosciencs,2013,52(1): 361-371.
6 邓红卫,胡普仑,周科平,等 .采场结构参数敏感性正交数值模拟试验研究[J].中南大学学报(自然科学版),2013,44(6):2463-2469.
Deng Hongwei , Hu Pulun , Zhou Keping ,et al .Test of orthogonal numerical simulation on sensitivity of stope structure parameters[J].Journal of Central South University(Science and Technology),2013,44(6):2463-2469.
7 胡建华,任启帆,黄仁东,等 . 地下矿山采场结构参数的核主成分分析法优化[J]. 矿冶工程,2018,38(2):25-29,33.
Hu Jianhua , Ren Qifan , Huang Rendong ,et al .Optimization of structural parameters of stope in underground mine with kernel principal component analysis[J].Mining and Metallurgical Engineering,2018,38(2):25-29,33.
8 康虔,张钦礼,张楚旋,等 .理想点法在采场结构参数优化中的应用[J]. 黄金科学技术,2018,26(1):25-30.
Kang Qian , Zhang Qinli , Zhang Chuxuan ,et al . Application of ideal point method in mining stope structural parameters optimization[J]. Gold Science and Technology,2018,26(1):25-30.
9 孙杨,罗黎明,邓红卫 .金属矿山深部采场稳定性分析与结构参数优化[J].黄金科学技术,2017,25(1):99-105.
Sun Yang , Luo Liming , Deng Hongwei .Stability analysis and parameter optimization of stope in deep metal mines[J].Gold Science and Technology,2017,25(1):99-105.
10 Zhu S Y , Jian Z Q , Hou H L ,et al .Analytical model and application of stress distribution on mining coal floor[J].Journal of China University of Mining and Technology,2008,18(1):13-17.
11 罗周全,汪伟,谢承煜,等 .倾斜中厚矿体采场宽度优化[J].中南大学学报(自然科学版),2015,46(10):3865-3871.
Luo Zhouquan , Wang Wei , Xie Chengyu ,et al .Optimization of stope width of inclined medium thick ore body[J].Journal of Central South University (Science and Technology),2015,46(10): 3865-3871.
12 牛勇,李克钢 .房柱采矿法采场结构参数优化理论研究及应用[J]. 黄金科学技术,2015,23(6):75-80.
Niu Yong , Li Kegang . Study on the theory of room and pillar mining method optimization of stope structure parameters and its application[J]. Gold Science and Technology,2015,23(6):75-80.
13 李晓磊 .一种新型的智能优化方法——人工鱼群算法[D].杭州:浙江大学,2003.
Li Xiaolei . A New Intelligent Optimization Method:Artificial Fish School Algorithm[D].Hangzhou:Zhejiang University,2003.
14 Bucher C G , Bourgund U .A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66.
15 王万军 .基于Vague 集相似度量的一种联系数方法[J].计算机工程与应用,2012,48(1):132-134.
Wang Wanjun . Connection numbers method of similarity measure based on Vague sets[J].Computer Engineering and Applications,2012,48(1):132-134.
16 王鸿绪 .单值数据转化Vague值数据的定义和转化公式[J].计算机工程与应用,2010,46(24):42-44.
Wang Hongxu .Definition and transforming formulas from single valued data to Vague valued data[J].Computer Engineering and Applications,2010,46(24):42-44.
17 Yu W Z , Tang D S . Application of TOPSIS model based on Vague set entropy in the evaluation of groundwater quality[J].Advanced Materials Research,2013,712-715:452-456.
18 王海霞 .基于Vague 集的模糊多属性决策方法的研究及应用[D].杭州:浙江理工大学,2011.
Wang Haixia .Fuzzy Multi-atrribute Decision Making Based on Vague Sets [D].Hangzhou:Zhejiang Sci-Tech University,2011.
19 Wong F S .Slope reliability and response surface method[J].Journal of Geotechnical Engineering,1985,111(1):32-53.
20 王联国,洪毅,赵付青,等 .一种简化的人工鱼群算法[J].小型微型计算机系统,2009,30(8):1663-1667.
Wang Lianguo , Hong Yi , Zhao Fuqing ,et al .Simplified artificial fish swarm algorithm[J].Journal of Chinese Computer Systems,2009,30(8):1663-1667.
[1] SHENGJianlong, ZHAIMingyang. Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method [J]. Gold Science and Technology, 2018, 26(3): 297-304.
[2] WANG Xinmin,RONG Shuai,ZHAO Maoyang,ZHANG Qinli . Concentration Equipment Optimization Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2017, 25(3): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[4] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[5] YU Guang-Meng, BAI Mo-Cheng, GUO Dun-Hua. [J]. J4, 2010, 18(4): 33 -36 .
[6] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[7] LI Hong-Jie, CU Jing-Ji, MA Shu-Jiang. [J]. J4, 2010, 18(4): 41 -46 .
[8] YUAN Dong-Cheng, XU Xiao-Feng. [J]. J4, 2010, 18(4): 47 -49 .
[9] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[10] LIU Dong-Hai, LIU Xin-Hui. Research on the Characteristics of Pyrite and its Gold -bearing Properties of Zhaishang Oversized Gold Deposit in Western Qinling[J]. J4, 2010, 18(6): 8 -12 .