img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (4): 511-519.doi: 10.11872/j.issn.1005-2518.2018.04.511

Previous Articles     Next Articles

Study on Time-Variant Mechanics Properties of Shallow Goaf Group Based on Creep Experiment

Zhongyuan GU1,2(),Keping ZHOU1   

  1. 1 Hunan Key Laboratory of Mineral Resources Exploitation and Hazard Control for Deep Metal Mines,School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2Jilin Northeast Asia International Engineering Technology Group Co.,Ltd, Changchun 130000,Jilin,China
  • Received:2018-04-06 Revised:2018-07-20 Online:2018-10-10 Published:2018-10-17

Abstract:

One of important factors that lead to ground and goaf collapse is the mechanical properties deterioration of shallow goaf group through time.Taking the shallow goaf group in Gumaling gold mine as an example,the creep model of the surrounding rock was obtained from rock creep test,and the time-variant mechanics properties of the shallow goaf group was analyzed by using numerical simulation method.The results show that the creep mechanical properties of the rock can be described by Cvisc model.After the goaf group is formed,the stress and displacement of ground rock mass and surrounding rock will change over time,showing significant time-variant mechanical characteristics.The roof displacement of the goaf group increases over time.The largest displacement is in the central goaf group,and the displacement is 0.24 m at the fifth year,indicating that the roof of goaf group will gradually collapse.The lateral deformation at two sides of pillar increases with time.Due to the surface failure of surrounding rock,the pillar continually narrows down,leading to the large-scale destruction of the goaf group.The ground forms a subsidence area centered on the central part of goaf group.The depth and extent of subsidence area increase with time,reaching 0.21 m at the fifth year. Some measures should be taken to protect the goaf group.

Key words: goaf group, time-varying mechanics, creep test, ground collapse, roof subsidence, pillar failure

CLC Number: 

  • TD851

Fig.1

Creep curve of specimen A1"

Table 1

"

蠕变应力/MPa 起始应变值/% 稳定应变值/% 蠕变应变/%
24.486 1.425 1.5638 0.1388
48.972 1.802 1.9019 0.0999
73.458 2.125 2.2678 0.1428
97.944 2.454 2.5043 0.0503
122.430 2.828 2.9168 0.0888

Table 2

"

试件 高度/mm 直径/mm 蠕变抗压强度/MPa 蠕变系数
A1 99.43 49.52 123.521 0.841
A2 100.22 48.65 111.844 0.761
A3 99.78 48.79 119.249 0.812

Table 3

"

试件 E M /GPa η M /(GPa·s) E K /GPa η K /(GPa·s)
平均值 4.52 4.07×108 62.93 1.61×103
A1 4.17 5.39×108 62.45 1.58×103
A2 4.51 2.16×108 62.72 1.28×103
A3 4.87 4.67×108 63.61 1.98×103

Fig.2

Comparison of experimental and simulated creep curves"

Fig.3

Model of mine numerical simulation"

Table 4

"

材料 弹性模量/GPa 泊松比 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa
矿体 14.3 0.30 6.94 44.96 0.7
围岩 19.8 0.31 7.60 40 1.5

Fig.4

Statics analysis results"

Fig.5

Creep displacement"

Fig.6

Stress and displacement variation of roof"

Fig.7

Stress and displacement variation of pillar"

Fig.8

Displacement variation of surface"

Fig.9

Actual displacement variation of surface"

1 马海涛.“11.6”特别重大坍塌事故矿区采场稳定性三维数值模拟分析[J].中国安全生产科学技术,2007,3(6):68-72.
Ma Haitao .3D-Numerical simulation of stope stability in"11.6" accident of gypsum mine collapse[J].Journal of Safety Science and Technology,2007,3(6):68-72.
2 Wang J A , Shang X C , Ma H T .Investigation of catastrophic ground collapse in Xingtai gypsum mines in China[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1480-1499.
3 Ma H T , Wang J A , Wang Y H .Study on mechanics and domino effect of large-scale goaf cave-in[J].Safety Science,2012,50(4):689-694.
4 武光明,郑怀昌,肖超,等.地下采空区利用及其稳定性分析[J].化工矿物与加工,2015(7):32-36.
Wu Guangming , Zheng Huaichang , Xiao Chao ,et al.Analysis of utilization and stability of underground mined-out area[J].Industrial Minerals & Processing,2015(7):32-36.
5 赵奎.岩金矿山采空区及残留矿柱回采稳定性研究[J].岩石力学与工程学报,2003,22(8):1404.
Zhao Kui .Stability study of mined-out areas and recovery of residual pillars in rocky gold mine[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1404.
6 刘艳红,罗周全.采空区失稳的安全流变—突变理论分析[J].工业安全与环保,2009,35(9):5-7.
Liu Yanhong , Luo Zhouquan .Analysis of cavity instability based on safety rheology-mutation[J].Industrial Safety and Environmental Protection,2009,35(9):5-7.
7 何峰,王来贵,于永江.采空区悬顶岩梁模型及其流变分析[J].矿山压力与顶板管理,2005,22(4):84-85,88.
He Feng , Wang Laigui , Yu Yongjiang .Rock beam model of hang arch in operation goaf and rheologic analysis[J].Ground Pressure and Strata Control,2005,22(4):84-85,88.
8 孙琦,张向东,张淑坤,等.多向荷载作用下采空区顶板—矿柱流变力学模型[J].防灾减灾工程学报,2015,35(5):679-684.
Sun Qi , Zhang Xiangdong , Zhang Shukun ,et al.Rheological mechanics model of roof-pillars in mine goaf under multidirectional loads[J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(5):679-684.
9 张耀平,曹平,袁海平,等.复杂采空区稳定性数值模拟分析[J].采矿与安全工程学报,2010,27(2):233-238.
Zhang Yaoping , Cao Ping , Yuan Haiping ,et al.Numerical simulation on stability of complicated goal[J].Journal of Mining ang Safety Engineering,2010,27(2):233-238.
10 李铁,刘诗杰,马海涛,等.采空区顶板流变破断发展及灾变时间[J].中国有色金属学报,2016,26(3):666-672.
Li Tie , Liu Shijie , Ma Haitao ,et al.Development and catastrophe time of rheological collapse in goaf roof[J].The Chinese Journal of Nonferrous Metals,2016,26(3):666-672.
11 王金安,李大钟,马海涛.采空区矿柱—顶板体系流变力学模型研究[J].岩石力学与工程学报,2010,29(3):577-582.
Wang Jin’an , Li Dazhong , Ma Haitao .Study of rheological mechanical model of pillar-roof system in mined-out area[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(3):577-582.
12 孙琦,魏晓刚,卫星,等.采空区矿柱流变特性对露天矿边坡稳定性的影响研究[J].中国安全科学学报,2014,24(8):85-91.
Sun Qi , Wei Xiaogang , Wei Xing ,et al.Study on effects of pillars rheological properties on open-pit slope stability[J].China Safety Science Journal,2014,24(8):85-91.
13 梁冰,汪北方,姜利国,等.浅埋采空区垮落岩体碎胀特性研究[J].中国矿业大学学报,2016,45(3):475-482.
Liang Bing , Wang Beifang , Jiang Liguo ,et al.Broken expand properties of caving rock in shallow buried goal[J].Journal of China University of Mining & Technology,2016,45(3):475-482.
14 胡高建,杨天鸿,张飞,等.复杂空区群回采围岩破坏模式及区域并行研究[J].采矿与安全工程学报,2017,34(3):565-572.
Hu Gaojian , Yang Tianhong , Zhang Fei ,et al.Parallel computing technologies for the failure mode and area of surrounding rock in complex goals[J].Journal of Mining & Safety Engineering,2017,34(3):565-572.
15 孙琦,张向东,杜东宁,等.浅埋采空区对路基稳定性影响的数值模拟[J].中国地质灾害与防治学报,2015,26(2):127-131.
Sun Qi , Zhang Xiangdong , Du Dongning ,et al.Numerical simulation of the impact of shallow seam goaf on highway safety[J].The Chinese Journal of Geological Hazard and Control,2015,26(2):127-131.
16 于跟波,杨鹏,陈赞成.缓倾斜薄矿体矿柱回采采场围岩稳定性研究[J].煤炭学报,2013,38(增2):294-298.
Yu Genbo , Yang Peng , Chen Zancheng .Study on surrounding rock stability of pillar extraction in thin gently inclined ore body[J].Journal of China Coal Society,2013,38(Supp.2):294-298.
17 Lu H J , Yan S H , Pan G H .Stability comprehensive analysis model of iron deposit retained goaf[J].Applied Mechanics and Materials,2013,256(1):2688-2691.
18 张洋,李占金,李示波,等.某矿采空区数值模拟研究与稳定性分析[J].矿业研究与开发,2013,33(4):59-61.
Zhang Yang , Li Zhanjin , Li Shibo ,et a1.Numerical simulation and stability analysis of mined-out area in a mine[J].Mining Research and Development,2013,33(4):59-61.
19 Castellanza R , Gerolymatou E , Nova R. An attempt to predict the failure time of abandoned mine pillars[J].Rock Mechanics and Rock Engineering,2008,41(3):377-401.
20 杨逾,于洁瑜,王宇.条带开采采空区覆岩移动规律数值模拟分析[J].中国地质灾害与防治学报,2017,28(1):96-101.
Yang Yu , Yu Jieyu , Wang Yu .Numerical simulation study on movement law of overlying strata of goaf in strip mining[J].The Chinese Journal of Geological Hazard and Control,2017,28(1):96-101.
21 王军,蒋清南,曹平,等.流变作用下露采岩质边坡和采空区的稳定性分析[J].矿业研究与开发,2011,31(5):87-89.
Wang Jun , Jiang Qingnan , Cao Ping ,et a1.Analysis on stability of goaf and open-pit rock slope based on rheological mechanics of rock material[J].Mining Research and Development,2011,31(5):87-89.
22 姜立春,贾晓川.采空区群的亚稳定“短板”单元甄别[J].地下空间与工程学报,2017,13(增1):344-348.
Jiang Lichun , Jia Xiaochuan .Short board metastable unit search method for group of mined out area[J].Chinese Journal of Underground Space and Engineering,2017,13(Supp.1):344-348.
[1] DENG Hongwei,YANG Yiquan,DENG Junren,LIU Chuanju,ZHOU Yanlong. Study on Mining Sequence of Deep Orebody Under High Stress Environment Below Goaf [J]. Gold Science and Technology, 2017, 25(2): 62-69.
[2] YUAN Xiao,WANG Liguan,LIU Xiaoming,PENG Ping’an. Mining Mode Optimization Based on Improved Unascertained Measurement Theory [J]. Gold Science and Technology, 2015, 23(5): 72-76.
[3] ZHOU Yu-Bin, LI Yi-Fan, DENG Fei. Discrete Element Numerical Simulation of Subsidence Induced by Mining Under Fragmentized Rock-strip [J]. J4, 2006, 14(1): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Hongjun, LIU Xiyou. The Fashion and Expand of Erguna—HunLunbeier Deep Faultage and The Controlling To Deposite[J]. J4, 2007, 15(1): 10 -13 .
[2] . [J]. J4, 1995, 3(5): 53 -59 .
[3] ZENG Miaoxian. THE STUDY OF RELATIONSHIP BETWEEN GOLD ORE GRADE MINLING GRAIN-SIZE AND FLOATION INDEX[J]. J4, 2003, 11(4): 28 -34 .
[4] . [J]. J4, 1992, 0(2): 6 -11 .
[5] LIU Xinhui,YANG Dengmei,WANG Weifeng,ZHENG Weijun. Study on the Ore-controlling Structural and Metallogenetic Model of Jinglong-shan Gold Deposit,South Qinling[J]. Gold Science and Technology, 2013, 21(6): 1 -10 .
[6] WANG Lixin,JIA Lei,WU Jie,LIU Chonghao,YANG Longbo. Geological Characteristics and Metallogenic Regularity of Huachanggou Gold Deposit,Shaanxi Province[J]. Gold Science and Technology, 2013, 21(6): 11 -21 .
[7] GUO Hongle,DONG Junchao,LIU Jiangling,LIU Xinhui,LI Fusheng,MA Yongbing. Gold Mineralization Conditions and Metallogenic Prediction of the Western Part of Li-Min Metallogenic Belt in Gansu Province[J]. Gold Science and Technology, 2013, 21(6): 22 -29 .
[8] WANG Hu,LIU Yang,QIN Xiangwei,QI Chuanduo. The Practice of Improving the Gold Concentrate Grade by Middling Regrinding and Process Reformation[J]. Gold Science and Technology, 2014, 22(6): 55 -59 .
[9] TIAN Runqing,LIU Yunhua,TIAN Minmin,WEI Juzhen,TENG Fei,LI Huan,LI Xing. Mineral Processing Experiments on Fine-disseminated Gold Ore from Shaanxi Province[J]. Gold Science and Technology, 2016, 24(6): 102 -106 .
[10] XIAO Fengli, ZENG Qingdong, MA Fengshan, WANG Zhaokun, SUN Zhifu, SUN Zongfeng. Features of Major Gold Metallogenic Fracture Belt in Northwestern Jiaodong[J]. Gold Science and Technology, 2018, 26(4): 396 -405 .