img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (3): 359-377.doi: 10.11872/j.issn.1005-2518.2023.03.137

• Mineral Exploration and Resource Evaluation •     Next Articles

Occurrence Characteristics of Lithium Rare Light Metal Clay-type Deposits in Balunmahai Basin of Qaidam Basin

Tong PAN1(),Jianzhou CHEN2,3(),Chengwang DING2,3,Yuliang MA2,3,Hui LIANG4,Tao ZHANG2,3,Xiaochun DU2,3   

  1. 1.Qinghai Bureau of Geology and Mineral Exploration and Development, Xining 810008, Qinghai, China
    2.The Fourth Geological Exploration Institute of Qinghai Province, Xining 810001, Qinghai, China
    3.Qinghai Key Laboratory of Shale Gas Resources, Xining 810001, Qinghai, China
    4.Qinghai Zhanyuan Geological Exploration Co. , Ltd. , Xining 810008, Qinghai, China
  • Received:2022-10-08 Revised:2023-01-11 Online:2023-06-30 Published:2023-07-20
  • Contact: Jianzhou CHEN E-mail:pant66@163.com;qhchjzh@163.com

Abstract:

In order to identify the occurrence, enrichment, storage conditions and distribution characteristics of rare metal ore in the clay layer,to study the sedimentary characteristics,variation law and metallogenic law of the Qaidam Basin,the evaluation of resource potential were studied in Balunhaima Basin of Qaidam Basin. The investigation and evaluation of lithium rare light metals as the main minerals in Balunmahai salt lake Basin of Qaidam Basin has been carried out, including drilling, sample collection and testing, statistical analysis of data, correlation of rock and ore-bearing clay layers, law summary and research work on the availability of ore-bearing clay. Three layers of ore-bearing clay layers were delineated in the Quaternary Holocene (Qh), Upper Pleistocene (Qp3) and Middle Pleistocene (Qp2). It is estimated that the total potential resources of LiCl can reach 1.1441 million tons, which is converted into the total potential resources of Li2O, Rb2O and Cs2O reaching 403 200 tons, 357 200 tons and 31 300 tons respectively.The lithium leaching rate reaches 51%~55% with 10% sulfuric acid concentration,25% pulp concentration,1 hour leaching time and 25 ℃ leaching temperature.The thickness of ore-bearing clay layer and the contents of Li,Rb and Cs are stable. Lithium is mainly composed of Fe-Mn binding state,followed by residue state,Rb and Cs are mainly composed of residue state.The clay minerals are mainly illite,and the contents of Li,Rb and Cs are positively correlated with the clay content. It is concluded that there are both structural lithium and adsorbed lithium in clay-type lithium deposits in this area,which is a kind of clay-type lithium deposits between carbonate clay-type lithium deposits and volcanic clay-type lithium deposits.This type is a new type in Balunmahai Basin,and the mining area has the conditions for extraction and utilization.In this paper,the investigation and evaluation of rare light metal lithium deposits were carried out for the first time in clay layer,and the clay-type lithium rare light metal resources were found.The orebody is associated with liquid ore and solid salt ore,which is an important part of salt lake resources.The research lays a foundation for the overall planning,development and efficient utilization of the evaluation area of the Balunmahai Basin.

Key words: clay-type lithium ore, occurrence characteristics, sedimentary lithium ore, rare metal deposits, resource potential, investigation and evaluation

CLC Number: 

  • P618.71

Fig.1

Geological sketch map of Mahai Basin in Qaidam"

Fig.2

Comprehensive column chart of strata in Balunmahai Basin(modified after Ma et al.,2010)"

Table 1

Index parameter of each ore-bearing clay stratum for potential resource estimation"

黏土层编号样品数/个厚度/m面积/km2体重/(t·m-3湿度/%湿度校正系数
范围平均值范围平均值范围平均值范围平均值范围平均值
N80.51~5.682.590.126~1.9730.9452.06~2.122.0716.39~16.7516.6281.33~83.5483.38
N361.95~20.259.820.201~24.8415.0291.96~2.082.0616.12~19.3716.7282.11~83.8883.28
N100.78~6.003.480.329~4.0531.2452.05~2.102.0616.01~16.4616.3683.54~83.9983.64

Fig.3

Clay layers with different colors developed in the evaluation area of Balunmahai Basin"

Fig.4

Clay layers with different compositions developed in the evaluation area of Balunmahai Basin"

Table 2

Statistics on the characteristics of various clay layers and ore-bearing clay layers in the evaluation area of Balunmahai Basin"

黏土层

分类

控制工程数/个

分布

深度/m

单工程或含矿黏土层厚度/mLiCl含量/(×10-6Rb2O含量/(×10-6Cs2O含量/(×10-6岩石组合、结构构造特征
最小值最大值平均值最小值最大值平均值最小值最大值平均值最小值最大值平均值
褐色黏土870~44.800.7222.3510.2243.09477.01352.2662.73215.40120.085.4019.7410.12岩石组合:灰褐色含石膏黏土、含粉砂黏土、含石盐黏土等
灰绿色黏土640.75~36.100.5410.104.14163.69447.09324.7348.23138.8891.284.2213.268.92岩石组合:灰绿色含石膏黏土、含粉砂黏土、含石盐黏土等

黑色含炭

黏土

380.45~42.100.5110.954.06160.63461.99345.4440.14134.5894.064.0413.268.84岩石组合:含石盐含炭黏土、含粉砂含炭黏土、含石膏含炭黏土、黑色含炭黏土等
含粉砂黏土673.40~40.300.8217.686.38228.51477.01331.5466.40154.20117.823.4215.2610.4岩石组合:灰褐、灰绿色含粉砂黏土、含炭含粉砂黏土、粉砂—黏土等
含石膏黏土702.10~35.100.7620.927.69245.72455.02356.4853.70155.56106.184.5613.289.09岩石组合:含石膏黏土、含粉砂石膏黏土、含石膏石盐黏土、含石膏含炭黏土等
含石盐黏土440~38.100.7022.804.56149.64517.02333.0644.40219.11103.073.5418.138.37岩石组合:灰褐、灰绿色含石盐黏土、含石膏石盐黏土、含粉砂石盐黏土等

N含矿

黏土层

13-0.5111.0512.55298.05422.16351.464.36140.68106.925.1113.268.84岩石组合:灰褐、灰绿色含石盐石膏黏土、灰黑色含炭黏土、棕褐色含石膏黏土、黑色含粉砂含炭黏土等;结构构造:不含夹石,结构简单,属于中厚含矿黏土层,大部分可采,多为粉砂泥质结构,松散

N含矿

黏土层

87-0.8230.4014.11204.78624.85346.9461.90151.06107.555.0113.269.32岩石组合:灰褐—灰绿—灰黑色含石膏黏土、灰褐—灰绿—灰黑色含石盐黏土、灰褐—灰绿色含粉砂黏土、含石膏—含石盐—含粉砂黑色含炭黏土;结构构造:全区可采,含矿黏土层较为稳定,厚度较大,属于中厚含矿黏土层,含夹石多为1层,局部3~5层,结构为简单—较简单含矿黏土层,多为粉砂泥质结构、泥质结构,松散

N含矿

黏土层

14-0.608.002.9238.20478.80348.3472.90153.10111.85.4913.019.32岩石组合:灰褐色含粉砂黏土、灰褐色含石膏石盐黏土、灰褐色含石膏粉砂黏土、灰绿色含石膏粉砂黏土;结构构造:大部分可采,不含夹石,结构简单,多为粉砂泥质结构,松散

Fig.5

Contour map of characteristic parameters of NⅣ ore-bearing clay layer"

Fig.6

Contour map of characteristic parameters of NⅢ ore-bearing clay layer"

Fig.7

Comparison of the thickness of ore-bearing clay layer and rock-salt layer"

Fig.8

Variation characteristics of vertical thickness of each layer in the north-south Luqu"

Fig.9

Image of clay horizon at point D6 in Luqu"

Fig.10

Schematic diagram of B-B′ profile in the evaluation area of Balunmahai Basin"

Fig.11

Longitudinal profile of 80 line in the evaluation area of Balunmahai Basin"

Fig.12

Content change map of rare-light metal elements in the evaluation area of Balunmahai Basin"

Table 3

Content change characteristics of rare metal elements in different media(×10-6)"

类别含量指标LiRbCsLi2ORb2OCs2O
全区最大值93.80174.0017.60201.90190.2918.66
最小值2.934.280.306.314.680.32
平均值49.8489.717.61107.2898.118.07
粉砂层最大值71.80118.007.90154.55129.058.38
最小值12.4030.601.3026.6933.471.38
平均值31.7775.253.5168.3882.303.72
石盐层最大值46.3098.803.5099.66108.053.71
最小值2.934.280.306.314.680.32
平均值18.4438.511.5239.6942.121.62
全区黏土层最大值92.50174.0016.30199.11190.2917.28
最小值19.3022.401.0041.5424.501.06
平均值56.3599.188.92121.29108.479.46
灰褐色黏土最大值92.20174.0017.60198.46190.2918.66
最小值24.5040.601.0052.7444.401.06
平均值57.58107.099.28123.94117.129.84
灰绿色黏土最大值86.50142.0014.20186.19155.3015.05
最小值21.3025.002.6445.8527.342.80
平均值53.1283.098.36114.3490.878.86
黑色含炭黏土最大值92.50143.0014.20199.11156.3915.05
最小值19.3022.401.8741.5424.501.98
平均值54.8485.678.31118.0493.698.81
含粉砂黏土最大值84.90174.0016.30182.75190.2917.28
最小值26.8042.803.8757.6946.814.10
平均值54.75107.289.79117.85117.3310.38
含石膏黏土最大值93.80164.0015.80201.90179.3616.75
最小值21.3039.202.6045.8542.872.76
平均值57.8897.028.55124.59106.109.06
含石盐黏土最大值91.80162.0014.20197.60177.1715.05
最小值23.9025.002.6451.4427.342.80
平均值56.2693.637.86121.10102.408.33

Table 4

Mineral content of ore-bearing clay samples(%)"

矿物名称灰褐色黏土+灰绿色黏土+黑色含炭黏土黑色含炭黏土灰褐色黏土+灰绿色黏土
石膏19.119.64.9
石盐18.014.919.5
石英20.020.320.8
文石3.205.0
斜长石5.65.78.3
菱铁矿000
光卤石4.63.47.4
白云石2.43.63.2
方解石3.63.25.6
黄铁矿1.20.21.7
黏土矿物22.329.223.6

Fig.13

X-ray diffraction analysis spectrum of clay mineral in No.6 sample"

Table 5

Relative content of clay minerals(%)"

样品编号黏土矿物相对含量
伊蒙混层伊利石高岭石绿泥石
6号样1660915
7号样2160712
8号样1464814

Table 6

Chemical phase analysis results of rare metal elements in No.7 synthetic samples"

化学物相态LiRbCs

含量

/(×10-6

分配率

/%

含量

/(×10-6

分配率

/%

含量

/(×10-6

分配率

/%

总量111.12100.0051.17100.004.27100.00
离子结合态5.695.120.571.120.000.00
碳酸盐结合态5.725.150.761.480.000.00
铁锰结合态75.9168.315.3510.460.286.62
有机结合态4.233.812.675.210.9622.60
残渣态19.5717.6141.8281.733.0270.79

Table 7

Correlation matrix of sample elements"

LiBeNaMgAlSiSKCaMnFeCoNiCuZnRbCs
Li1
Be0.15161
Na0.11570.01591
Mg0.75130.12490.16111
Al0.79390.15980.14740.73261
Si0.77230.16410.16220.70360.89751
S0.49460.09920.25040.47790.58990.58601
K0.79500.16350.22090.71390.88930.86780.52131
Ca-0.4988-0.1011-0.2709-0.4829-0.5851-0.5807-0.9398-0.53591
Mn0.45170.07350.09550.49880.40940.41240.29290.40560.29751
Fe0.55650.083330.08340.77330.48500.45930.34000.43990.36200.45421
Co0.33480.05640.05740.30820.279230.28400.18210.28270.18380.21330.27271
Ni0.40820.076780.03130.40650.35800.343810.23080.34290.21940.21280.34260.18051
Cu0.24610.04687-0.00230.24570.21180.20730.12740.21460.15450.14860.25280.12100.13231
Zn0.18730.01353-0.07410.319820.12390.1077-0.00910.10310.03730.17520.37740.09930.13720.08091
Rb0.58450.12490.10700.48020.63400.62050.40610.65850.40320.29790.29330.22420.28450.16100.05111
Cs0.74280.14140.10540.57450.70280.70710.44030.74090.43240.36070.37600.32690.35490.22420.10330.59021

Fig.14

Variation diagram of Li-Si-Al-K element content by line scanning"

Table 8

Sieve analysis results of raw ore size"

样品类型粒级/mm产品产率/%品位/(×10-6回收率/%
LiRbCsLiRbCs
混合样品-1.000+0.33557.0571.4963.355.8657.9554.0153.74
-0.335+0.20013.7873.5769.116.8914.4114.2315.27
-0.200+0.1257.7286.2569.946.719.468.068.33
-0.125+0.1004.1560.3866.736.193.564.144.13
-0.100+0.0743.8060.7470.766.223.284.023.80
-0.074+0.0386.1052.6374.316.274.566.786.15
-0.0387.4164.4579.187.216.788.768.59
原矿100.0070.3766.926.22100.00100.00100.00
黑色含炭黏土-1.000+0.33560.9668.1561.075.9659.9957.5957.74
-0.335+0.20014.1963.3266.916.4112.9714.6914.45
-0.200+0.1256.78103.6272.947.6910.157.658.29
-0.125+0.1003.7467.4565.386.293.643.783.74
-0.100+0.0743.4766.9567.086.443.353.603.55
-0.074+0.0385.1763.5768.966.584.755.525.41
-0.0385.6862.6781.527.565.147.176.83
原矿100.0069.2564.646.29100.00100.00100.00

Table 9

Comparison of salt lake deposit types in Qaidam Basin"

分类特征

成矿

作用

成矿

地质体

矿体形状及规模矿石结构构造(水化学类型)矿石矿物有用组分的赋存形式
第四纪现代盐湖矿床蒸发沉积作用盐湖卤水、盐岩

形状:盐湖盆地控制液相,固

体呈似层状、透镜状;规模:

大型、超大型

固液相共存,以液相为主。

固相呈自形、半自形结构,

粒状、块状、层状构造

KCl、NaCl、MgCl2、MgSO4等,钾石盐、光卤石、石盐、芒硝

晶间卤水、孔隙卤水;

盐类矿物

砂砾孔隙卤水矿床化学沉积作用承压卤水

形状:由含水层控制;

规模:小型、中型、大型

液相KCl、NaCl、MgCl2、MgSO4

晶间卤水、孔隙卤水、

裂隙水

古近纪—新近纪盐类矿床化学沉积作用盐岩

形状:似层状、层状、透镜状;

规模:小型、中型、大型、超大型

固相,自形、半自形结构,粒

状、块状、层状构造

天青石、菱锶矿、石膏、石盐盐类矿物
黏土型矿床沉积吸附作用黏土层

形状:似层状、层状;

规模:大型、超大型

固相,粉砂泥质结构、泥质

结构,松散

含Li、Rb、Cs、Sr、B的伊利石、绿泥石、高岭石、伊蒙混层

吸附于黏土矿物中或

赋存于矿物晶格中,与

黏土矿物含量呈正比

Andreas B, Bruce D V,2014.Geochemistry at the Earth’s Surface[M].Washington:Library of Congress.
Anouk M B, Martin P S, Adrian A F,et al,2020.Adsorption of rare earth elements in regolith-hosted clay deposits[J].Nature Communications,11:4386.
Cui Yi, Wen Hanjie, Yu Wenxiu,et al,2022.Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of Lower Permian in Central Yunnan[J].Acta Petrologica Sinica,38(7):2080-2094.
Han Guang, Fan Qishun, Liu Jiubo,et al,2021.Origin and hydrochemistry of deep brines from anticlinal reservoir in the western-central Qaidam Basin[J].Journal of Sait Lake Research,29(4):1-11.
Han Guang, Hu Yan, Liu Jiubo,et al,2022.Research report of metallogenic system in Qaidam Basin [R].Golmud :Qinghai Qaidam Comprehensive Geological and Mineral Exploration Institute.
Hindshawa R S, Toscab R, Thomas L,et al,2019.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta,250(1):219-237.
Li Hongpu, Hou Xianhua, Zheng Mianping,et al,2022a.Discussion on metallogenic model and prospecting direction of Pleistocene gravel brine potassium deposit in western Qaidam Basin[J].Journal of Lake Sciences,34(3):1043-1054.
Li Hongpu, Pan Tong, Li Yongshou,et al,2022b.Geochemical composition and origin tracing of structural fissure and pore brine in western Qaidam Basin[J].Earth Science,47(1):36-44.
Li Hongpu, Zheng Mianping,2014a.Metallogenic characteristics of deep brine potassium salt deposit in western Qaidam Basin[J].Mineral Deposits Geology,(Supp.l):935-936.
Li Hongpu, Zheng Mianping, Hou Xianhua,et al,2022.Hydrochemistry characteristics and origin of new brine sandy gravelin early Pleistocene of Heibei concave in Qaidam Basin[J].Earth Science,39(10):1433-1442.
Li Hongpu, Zheng Mianping, Hou Xianhua,et al,2015.Control factors and water chemical characteristics of potassium-rich deep brine in Nanyishan structure of western Qaidam Basin[J].Acta Geoscientica Sinica,36(1):41-50.
Li Wenxia, Miao Weiliang, Zhang Xiying,et al,2022.Distribution characteristics of lithium in surface sediments of Nalinggele River,Qaidam Basin[J].Journal of Sait Lake Research,30(2):86-98.
Liu Lijun, Wang Denghong, Liu Xifang,et al,2017.The main types,distribution features and present situation of exploration and development for domestic and foreign lithium mine[J].Geology in China,44(2):263-278.
Liu Xixi, Yue Xin, Yuan Wenhu,et al,2019.Hydrochemical characteristics and evolutionary process of deep brines from Shizigou anticline structure in Qaidam Basin,China[J].Journal of Salt Lake Research,27(1):73-81.
Lu Jun, Pan Tong, Li Yongshou,et al,2021.A preliminary investigation of hydrochemical characteristics and genesis of deep brine in the central Qaidam Basin[J].Acta Geologica Sinica,95(7):2129-2137.
Ma Jinyuan, Hu Shengzhong, Tian Xiangdong,2010.Sedimentary environment and exploitation of Maihai potash deposits in Qaidam Basin[J].Journal of Salt Lake Research,18(3):9-17.
Ma Shengchao, Wang Denghong, Sun Yan,et al,2019.Geochronology and geochemical characteristics of Lower-Middle Triassic clay rock and their significances for prospecting clay-type lithium deposit[J].Earth Science,44(2):427-440.
Ministry of Natural Resources of the People’s Republic of China, 2020. Specifications for Mineral Geology Salt Part 2: Modern Salt Lake Salt: [S]. Beijing: Ministry of Natural Resources of the People’s Republic of China.
Pan Tong, Li Shanping, Wang Tao,et al,2022.Metallogenic characteristics and prospecting potential of lithium deposits in the Qinghai Province[J].Acta Geologica Sinica,96(5):1827-1854.
Vigier N A, Decarreau A B, Millot R C,et al,2008.Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle[J].Geochimica et Cosmochimica Acta,72:780-792.
Wen Hanjie, Luo Chongguang, Du Shengjiang,et al,2020.Carbonate-hosted clay-type lithium deposit and its prospecting significance[J].Chinese Science Bulletin,65:53-59.
Williams L B, Hervig R L,2005.Lithium and boron isotopes in illite-smectite:The importance of crystal size[J].Geochimica et Cosmochimica Acta,69(24):5705-5716.
Xu Chang,1985.Preliminary study on clay minerals in the sediments of Qinghai-Tibet Salt Lake[J].Chinese Journal of Geology,(1):87-96.
Yue Xin, Liu Xixi, Qiu Xindi,et al,2021.Hydrochemical characteristics and genesis of deep pore brine in Gas Hure area,western Qaidam Basin[J].Journal of Salt Lake Research,29(1):69-79.
Yue Xin, Liu Xixi, Lu Liang,et al,2019.Hydrochemical characteristics and origin of deep pore brine deposits in Mahai Basin[J].Acta Sedimentologica Sinica,37(3):532-540.
Zeng Xu, Lin Tong, Zhou Fei,et al,2021.Carbon and oxygen isotope characteristics of carbonate and Neogene depositional environment in the Yiliping area of Qaidam Basin[J].Natural Gas Geoscience,32(1):73-85.
Zhao Yuanyi, Fu Jiajun, Li Yun,2015.Super large lithium and Boron deposit in Jadar Basin,Serbi[J].Geological Review,61(1):34-44.
崔燚,温汉捷,于文修,等,2022.滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J].岩石学报,38(7):2080-2094.
韩光,樊启顺,刘久波,等,2021.柴达木盆地中西部背斜构造深层卤水水化学特征与成因[J].盐湖研究,29(4):1-11.
韩光,胡燕,刘九波,等,2022.柴达木盆地成矿系统研究报告[R].格尔木:青海省柴达木综合地质矿产勘查院.
李洪普,侯献华,郑绵平,等,2022a.柴达木盆地西部更新统砂砾型深层卤水钾矿成矿模式与找矿方向探讨[J].湖泊科学,34(3):1043-1054.
李洪普,潘彤,李永寿,等,2022b.柴达木盆地西部构造裂隙孔隙卤水地球化学组成及来源示踪[J].地球科学,47(1):36-44.
李洪普,郑绵平,2014a.柴达木盆地西部深层卤水钾盐矿成矿地质特征[J].矿床地质,(增l):935-936.
李洪普,郑绵平,侯献华,等,2014b.柴达木黑北凹地早更新世新型砂砾层卤水水化学特征与成因[J].地球科学,39(10):1433-1442.
李洪普,郑绵平,侯献华,等,2015.柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征[J].地球学报,36(1):41-50.
李雯霞,苗卫良,张西营,等,2022.柴达木盆地那棱格勒河流域表层沉积物中锂的分布特征[J].盐湖研究,30(2):86-98.
刘丽君,王登红,刘喜方,等,2017.国内外锂矿主要类型、分布特点及勘查开发现状[J].中国地质,44(2):263-278.
刘溪溪,岳鑫,袁文虎,等,2019.柴达木盆地西部狮子沟背斜构造区深部卤水水化学特征及演化分析[J].盐湖研究,27(1):73-81.
卢鋆,潘彤,李永寿,等,2021.柴达木盆地中部一里坪—西台吉乃尔地区深层卤水水化学特征及成因初探[J].地质学报,95(7):2129-2137.
马金元,胡生忠,田向东,2010.柴达木盆地马海钾盐矿床沉积环境与开发[J].盐湖研究,18(3):9-17.
马圣钞,王登红,孙艳,等,2019.我国西南部 T1/T2 黏土岩地质年代学、地球化学特征及其对黏土型锂矿的找矿意义[J].地球科学,44(2):427-440.
潘彤,李善平,王涛,等,2022.青海锂矿成矿特征及找矿潜力[J].地质学报,96(5):1827-1854.
温汉捷,罗重光,杜胜江,等,2020.碳酸盐黏土型锂资源的发现及意义[J].科学通报,65(1):53-59.
徐昶,1985.青藏盐湖沉积物中黏土矿物的初步研究[J].地质科学,(1):87-96.
岳鑫,刘溪溪,仇新迪,等,2021.柴西尕斯库勒地区深部孔隙卤水水化学特征及成因分析[J].盐湖研究,29(1):69-79.
岳鑫,刘溪溪,路亮,等,2019.马海盆地深部孔隙卤水水化学特征及成因[J].沉积学报,37(3):532-540.
曾旭,林潼,周飞,等,2021.柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J].天然气地球科学,32(1):73-85.
赵元艺,符家骏,李运,2015.塞尔维亚贾达尔盆地超大型锂硼矿床[J].地质论评,61(1):34-44.
中华人民共和国自然资源部,2020. 矿产地质规范 盐类 第2部分:现代盐湖盐类: [S].北京:中华人民共和国自然资源部.
[1] Jianguo WANG,Shizhen ZHANG,Jia XING,Zhinan WANG,Shengyun WEI,Jian HU. Geochemical Characteristics and Geological Significance of Ore-bearing Pegmatites in the Wulan Chakabeishan Area [J]. Gold Science and Technology, 2022, 30(6): 809-821.
[2] Liuan DUAN, Youfeng WEI, Xiongjun CHEN, Xiaomeng HAN, Yuncheng GUO. Potential Analysis of Gold Resources in Qianchuiliu Mining Area, Northeast Margin of Jiaolai Basin,Shandong Province [J]. Gold Science and Technology, 2020, 28(5): 701-711.
[3] Xin HUANG,Qian SONG,Yongjun WANG,Lijun SHEN,Yuzhen ZHU,Chao SUN. Evaluation of Gold Resource Potential in Qixia-Daliliuxing Area,Shandong Province [J]. Gold Science and Technology, 2020, 28(1): 21-31.
[4] Jizhou WANG,Zhouquan YAN,Lei XU,Kan LI,Yuanmao LI,Yaowen ZHENG,Huaitao WANG,Yuxi WANG. Potential Evaluation of Pegmatite-type Lithium-Beryllium Mineral Resources in Dahongliutan,Xinjiang [J]. Gold Science and Technology, 2019, 27(6): 802-815.
[5] SONG Yingxin,SONG Mingchun,DING Zhengjiang,WEI Xufeng,XU Shaohui,LI Jie,TAN Xianfeng,LI Shiyong,ZHANG Zhaolu,JIAO Xiumei,HU Hong,CAO Jia. Major Advances on Deep Prospecting in Jiaodong Gold Ore Cluster and Its Metallogenic Characteristics [J]. Gold Science and Technology, 2017, 25(3): 4-18.
[6] WANG Junping. Analysis on the Geological Characteristics and Mineralization Regularity of Longtoushan Gold Deposit in Inner Mongolia [J]. Gold Science and Technology, 2012, 20(6): 1-6.
[7] SUN Jie,LI Ruijun,ZHAO Zhouwei,XU Fen. The Geological Characteristics and Deep Resources Investigation Evaluation of Gold Orebodies in Xiejiagou Mining Area [J]. J4, 2012, 20(4): 39-42.
[8] WANG Shuchun,WANG Ruiteng,SUN Shuti. The Orebody Occurrence Characteristics and Deep Prediction in Chaihulanzi Gold Deposit,Inner Mongolia [J]. J4, 2012, 20(4): 109-112.
[9] LIU Zhijin ,ZHANG Weixin. Ore——formation Geological Condition and Analysis of Resource Potentiality for Shanhou Gold Deposit in Laixi [J]. J4, 2008, 16(2): 18-23.
[10] GENG Shu-Jie, ZHANG Wen-Zhao, LV Bing-Qiu. The resource potential analysis on the secondary fault structures of gold vein 302 lower plate in Damoqujia gold deposit of Jiaodong [J]. J4, 2006, 14(6): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Xiaojun. Measureing Trace Gold by Graphite Furnace Atomic Absorption:a Few Influencing Factors about Analyzing Accurate Degree[J]. J4, 2008, 16(4): 58 -61 .
[2] FENG Chao, SUN Zong-Feng, LI Wen, LIU Ri-Fu, CA Xiao-Ning. Geological Characteristics and Deep Resources Forecast of the 17 1 Gold Veins in Dongfeng Mining Area,Linglong Gold Deposit,Shandong Province[J]. J4, 2009, 17(6): 12 -16 .
[3] LIU Xi-You, LIU Hong-Jun, DAI Wen-Yu. Heilongjiang Province Laozuoshan Gold Ore Deposit East Ore Belt East Hydrology Geologycal Feature[J]. J4, 2007, 15(2): 9 -14 .
[4] . [J]. J4, 1995, 3(2): 33 -37 .
[5] ZHANG Kai, GAO Chunguo, WANG Junli, LU Xintao. The Harm and TreatmentMethods of Harmon ic in the Runn ing Process of Inverter[J]. J4, 2008, 16(6): 58 -59 .
[6] CAO Zhong, YE Hui, YANG Zhongqian. Study of Minerogenesis and Cause of  Formationin Taohuazui Copper and Gold-iron Mine Bed[J]. J4, 2005, 13(1-2): 6 -9 .
[7] YE Hui, WU Ddelin. The Jiguanzui Copper- Gold Mine Bed  Mineral Body Explores and Research the Side[J]. J4, 2005, 13(1-2): 16 -20 .
[8] DONG Jianle, WANG Yanzhong , DUAN Xiaojun , YU Xuezheng. The Remote Sen sing Geological Character istics and Gold Prospecting D irection of Sha lan town—Huap in the Eastern Jilin and Heilongjiang Prov inces[J]. J4, 2008, 16(6): 11 -15 .
[9] MA Bin, LEI Bin, TAN Xuejun. The Application And Evaluation Of The TypeWGL- 1 Medium Depth Bore Obliquity Survey Meter[J]. J4, 2005, 13(1-2): 30 -33 .
[10] DAI Lixin,YANG Guibin,HAN Qing,ZHAO Fenglin,ZHANG Xinye. The Present Condition and Contrast Analysis of the Engineering of Lovely Gold Mine Digging[J]. J4, 2004, 12(1): 13 -18 .