img

Wechat

Adv. Search

Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (6): 771-780.doi: 10.11872/j.issn.1005-2518.2021.06.114

• Mineral Exploration and Resource Evaluation •     Next Articles

Quantitative Metallogenic Prediction of Deep Prospecting Target Based on Big Data:Taking Gold Deposit in Daqiao Area as an Example

Huaitao WANG1,2,3(),Xiaowei WANG1,2,3,Yunzhi LUO1,2,3,Bingtian SONG1,2,3,Jianmin LUO1,2,3,Lei XU1   

  1. 1.Geology Survey of Gansu Province, Lanzhou 730000, Gansu, China
    2.Geoscience Big Data Exploration Engineering Technology Innovation Center of Gansu Provincial Bureau of Geo-logy and Mineral Exploration and Development, Lanzhou 730000, Gansu, China
    3.Geoscience Big Data Engineering Research Center of Gansu Province, Lanzhou 730000, Gansu, China
  • Received:2021-08-14 Revised:2021-10-11 Online:2021-12-31 Published:2022-03-07

Abstract:

Conventional geochemical sampling medium does not contain deep deposit information,and the remote sensing information is only the characteristics of surface images,which is difficult to identify deep deposit information.Geophysical information can well reflect the information of deep deposit and it is the best information choice for deep metallogenic prediction.However,the interpretation of geophysical information are multi-resolution,which has always seriously affected the accuracy and accuracy of deep prospecting target prediction.Big data is triggering a profound revolution in the field of Geoscience.New methods and technologies such as big data and artificial intelligence represented by statistical analysis methods and machine learning algorithms have been gradually applied to metallogenic prediction and achieved good prediction results.The Western Qinling area of Gansu Province is an important polymetallic metallogenic accumulation area in China,which has accumulated rich geological data.It is of great significance to carry out quantitative prediction of gold prospecting target by deep mining geological data with big data method for gold exploration and expansion of gold reserves in Western Qinling area of Gansu Province.In order to eliminate the multi solution of geophysical information and improve the prediction accuracy of deep prospecting target,big data ideas and methods were applied to deep mining of aeromagnetic data from Daqiao area in west Qinling of Gansu Province,and established the aeromagnetic database,the aeromagnetic information research unit database and the known ore unit database respectively.Through the discriminant analysis of aeromagnetic database and known ore unit database,a series of quantitative prediction models of prospecting target were constructed,and deep prospecting targets were delineated,combined with geological and mineral information to optimize the grade prospecting targets.A total of 31 gold prospecting targets have been delineated in the study area,including 6 Class Ⅰ targets (seeing ore rate 16.9%),10 Class Ⅱ ore targets (seeing mine rate 31.32%) and 15 Class Ⅲ targets (seeing ore rate 20%).Gold industrial ore bodies have been found in the prospecting target in the overburden area.The cumulative area of the target accounts for 2.4% of the area of the study area,which greatly reduces the scope of prospecting.The study believes that the series of quantitative prediction models for prospecting targets established based on aeromagnetic information have high accuracy in determining prospecting targets for Daqiao-type gold deposits in the study area.It provides a new idea and method for the metallogenic prediction of deep and concealed deposit.

Key words: aeromagnetic information, big data, quantitative prediction model, deep prospecting target, Daqiao gold deposit, Western Qinling

CLC Number: 

  • P618.51

Fig.1

Geotectonic map(a) and regional geology and mineral map(b) of the study area"

Table 1

Series models of quantitative metallogenic prediction of Daqiao-type gold deposit in the study area"

模型

分类

参数

变化

系数

贡献

累计

贡献

有效性检验
模型1.1(常量)-1.437

R0=1.62

F0.01=2.32

Fp=30.18

有矿正判率:98.8%

无矿正判率:92%

ΔT11.6826.3726.37
ΔT20.0222.2548.61
ΔT3-0.0117.8666.47
ΔT41.1915.782.17
ΔT51.1214.6396.8
ΔT6-1.631.5898.38
ΔT7-0.010.9399.31
ΔT81.350.2199.91
ΔT9-0.780.09100
模型1.2(常量)-10.659

R0=0.66

F0.01=3.02

Fp=-14.54

有矿正判率:95.5%

无矿正判率:94.2%

ΔT910.4957.8157.81
ΔT10-5.4719.5677.36
ΔT115.3417.0494.4
ΔT1202.8897.28
ΔT61.582.72100
模型2.1(常量)21.295
ΔT13305.1744.7144.71
ΔT14-178.9526.270.91
ΔT15-57.817.878.71

R0=0.70

F0.01=2.32

Fp=-11.58

有矿正判率:97.1%

无矿正判率:80.5%

ΔT160.017.4986.21
ΔT17-47.626.2892.48
ΔT18-1.464.1396.61
ΔT19-24.351.297.81
ΔT40.811.198.91
ΔT2024.580.7199.62
ΔT213.680.38100
模型2.2(常量)-4.179

R0=0.69

F0.01=1.47

Fp=0.93

有矿正判率:95%

无矿正判率:76.6%

ΔT12-0.0531.3731.37
ΔT30.0426.657.98
ΔT70.144.8362.81
ΔT1156.234.4967.3
ΔT22-0.133.1770.47
ΔT18-0.672.3872.85
ΔT235 116.342.3575.2
ΔT24-42.071.8977.09
ΔT25-57.961.6978.78
ΔT26-0.041.5380.31

Table 2

Statistical of prediction results of the quantitative metallogenic prediction model 1.1"

预测单元分级预测有矿单元/个预测有矿单元占比/%有矿单元/个有矿单元占比/%有矿单元 /有矿单元总数较有矿单元平均值 提高倍数
单元总数/个48 157有矿单元总数/个106
Ⅰ级单元3820.794912.830.4658.34
Ⅱ级单元6181.28152.430.1411.04
Ⅲ级单元9992.08282.800.2612.73
预测总数1 9994.15924.600.8620.92

Fig.2

Histogram of prediction results of the quantitative metallogenic prediction model 1.1"

Table 3

Statistical of prediction results of the quantitative metallogenic prediction model 1.2"

预测单元分级预测有矿单元/个预测有矿单元占比/%有矿单元/个有矿单元占比/%有矿单元 /有矿单元总数较有矿单位平均值提高倍数
单元总数/个48 157有矿单元总数/个106
Ⅰ级单元2470.51114.450.1020.23
Ⅱ级单元4000.8310.250.091.14
Ⅲ级单元6471.3491.390.856.32
预测总数1 2942.69211.620.197.38

Fig.3

Histogram of prediction results of the quantitative metallogenic prediction model 1.2"

Table 4

Statistical of prediction results of the quantitative metallogenic prediction model 2.1"

预测单元分级预测有矿单元/个预测有矿单元占比/%有矿单元/个有矿单元占比/%有矿单元 /有矿单元总数较有矿单元平均值提高倍数
单元总数/个48 157有矿单元总数/个106
Ⅰ级单元1970.413417.220.3278.26
Ⅱ级单元3200.66237.200.2232.72
Ⅲ级单元5171.07112.130.109.67
预测总数1 0342.15686.580.6429.89

Fig.4

Histogram of prediction results of the quantitative metallogenic prediction model 2.1"

Table 5

Statistical of prediction results of the quantitative metallogenic prediction model 2.2"

预测单元分级预测有矿单元/个预测有矿单元占比/%有矿单元/个有矿单元占比/%有矿单元 /有矿单元总数较有矿单元平均值 提高倍数
单元总数/个48 157有矿单元总数/个106
Ⅰ级单元1860.39136.9912.2631.77
Ⅱ级单元3010.63134.3212.2619.63
Ⅲ级单元4871.01122.4611.3211.20
预测总数9742.02383.9035.8517.73

Fig.5

Histogram of prediction results of the quantitative metallogenic prediction model 2.2"

Table 6

Information of prediction prospecting target of Daqiao-type gold deposit in the study area"

靶区编码靶区面积靶区分级矿床点矿床规模判别值
Ⅰ-19.4722.04
Ⅰ-230.75西和县大桥金矿床超大型矿床19.54
Ⅰ-31.9719.38
Ⅰ-41.3116.61
Ⅰ-58.0116.24
Ⅰ-64.8016.21
Ⅱ-711.98小金厂C8金矿化点矿化点16.1
Ⅱ-88.43联合村金矿化点矿化点16.04
Ⅱ-93.9015.47
Ⅱ-1014.6615.35
Ⅱ-116.60西和县白崖沟金矿小型矿床14.98
Ⅱ-123.5414.75
Ⅱ-135.4314.64
Ⅱ-1419.7313.87
Ⅱ-157.6713.73
Ⅱ-163.6613.6
Ⅲ-179.2512.58
Ⅲ-186.7212.36
Ⅲ-191.15西和县红山金矿化点矿化点11.88
Ⅲ-202.87大坪金矿化点矿化点11.81
Ⅲ-211.8911.49
Ⅲ-229.4811.44
Ⅲ-2313.3611.14
Ⅲ-241.8011.08
Ⅲ-256.1410.74
Ⅲ-260.9010.44
Ⅲ-274.769.87
Ⅲ-280.719.73
Ⅲ-297.008.51
Ⅲ-304.667.51
Ⅲ-310.56安子山金矿点矿点7.49

Fig.6

Distribution map of prediction prospecting target of Daqiao-type gold deposit in the study area"

null Carranza E J M,2009.Controls on mineral deposit occurrence inferred from analysis of their spatital pattern and spatial association with geological features[J].Ore Geology Reviews,35(3):383-400.
null Carranza E J M,2011.Geocomputation of mineral exploration targets[J].Computers & Geosciences,37(12):1907-1916.
null Frankel F, Reid R,2008.Big data:Distilling meaning from data[J].Nature,455:30.
null Luo Jianmin, Zhang Qi, Song Bingtian, al et,2017.Application of integrated geophysical and geochemical data processing to metallogenic target zone quantitative prediction and optimization[J].Bulletin of Mineralogy,Petrology and Geochemistry,36(6):886-890.
null Luo Jianmin, Wang Xiaowei, Song Bingtian, al et,2018.Discussion on the method for quantitative classification of magmatic rocks:Taking it’s application in West Qinling of Gansu Province for example[J]. Acta Petrologica Sinica,34(2):326-332.
null Luo Jianmin, Zhang Qi,2019a.Big data pioneers new ways of geoscience research:Identifying relecant relationships to enhance research feasibility[J].Earth Science Frontiers,26(4):6-12.
null Luo Jianmin, Wang Xiaowei, Zhang Qi, al et,2019b.Application of geological big data to quantitative target area optimization for regional mineral prospeting in China[J].Earth Science Frontiers,26(4):76-83.
null Liu Yanpeng, Zhu Lixin, Zhou Yongzhang,2018.Application of convolutional neural network in prospecting prediction of ore deposits:Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case[J].Acta Petrologica Sinica,34(11):3217-3224.
null Liu Yanpeng, Zhu Lixin, Zhou Yongzhang,2020.Experimental research on big data mining and intelligent prediction of prospecting target area-application of convolutional neural network model[J].Geotectonica et Metallogenia,44(2):192-202.
null Ren Wenxiu, Luo Jianmin, Sun Bainian, al et,2018.Application of geochemical data in gold prospecting and target selecting:Taking the Yushishan area in Gansu Province as a case[J].Acta Petrologica Sinica,34(11) :3225-3234.
null Silver D, Schrittwieser J, Simonyan K, al et,2017.ing the game of go without human knowledge[J].Nature,550:354-359.
null Wigan M R, Clarke R,2013.Big data’s big unintended consequences[J].IEEE Computer,46:36-53.
null Wang Huaitao, Luo Jianmin, Wang Jinrong, al et,2018.Quantitative classification and metallogenic prognosis of basic-ultrabasic rocks based on big data:Taking the Beishan area as an example[J].Acta Petrologica Sinica,34(11):3195-3206.
null Wang Huaitao, Yang Jing, Du Jun, al et,2019.Comparison of the ultrabasic rocks associated with the Cu-Ni deposits in Beishan and Jinchuan,Gansu province and those associated within-plate environment:preliminary results of big data research[J].Earth Science Fromtiers,26(4):94-108.
null Wang Yuxi, Luo Jianmin, Wang Jinrong, al et,2018.The gold prospecting targets quantitative optimization based on information of the magmatic rocks (oxide) in Dunhuang block,Gansu Province[J].Acta Petrologica Sinica,34(2):319-325.
null Wang Yu, Zhou Yongzhang, Xiao Fan, al et,2020.Numerical metallogenic modelling and support vector machine methodsapplied to predict deep mineralization:A case study from the Fankou Pb-Zn ore deposit in northern Guangdong[J].Geotectonica et Metallogenia,44(2):222-230.
null Zuo R G, Xiong Y H, Wang J, al et,2019.Deep learning and its application in geochemical mapping[J].Earth-Science Reviews,192:1-14.
null Zhang Qi, Zhou Yongzhang,2018.Big data helps geology de-velop rapidly[J].Acta Petrologica Sinica,34(11):3167-3172.
null Zhao C B, Hobbs B E, Ord A,2009.Fundamentals of Computational Geoscience[J].Berlin:Springer.
null Zhou Yongzhang, Chen Shuo, Zhang Qi, al et,2018.Advances and prospects of big data and mathematical geoscience[J].Acta Petrologica Sinica,34(2) :255-263.
null Zhang Zhongping, Wu Yafei, Li Jianwei,2018.Characteristics and genesis of the silicified breccias in the Dqiao gold deposit,West Qinling orogeny[J].Geological Science and Technology Information,37(2):79-88.
null 罗建民,张琪,宋秉田,等,2017.物化探信息综合处理在找矿靶区定量优选中的应用[J].矿物岩石地球化学通报,36(6):886-890.
null 罗建民,王晓伟,宋秉田,等,2018.岩浆岩定量分类方法探讨—以甘肃省西秦岭地区为例[J].岩石学报,34(2):326-332.
null 罗建民,张旗,2019a.大数据开创地学研究新途径:查明相关关系,增强研究可行性[J].地学前缘,26(4):6-12.
null 罗建民,王晓伟,张琪,等,2019b.地质大数据方法在区域找矿靶区定量优选中的应用[J].地学前缘,26(4):76-83.
null 刘艳鹏,朱立新,周永章,2018.卷积神经网络及其在矿床找矿预测中的应用——以安徽省兆吉口铅锌矿床为例[J].岩石学报,34(11):3217-3224.
null 刘艳鹏,朱立新,周永章,2020.大数据挖掘与智能预测找矿靶区实验研究——卷积神经网络模型的应用[J].大地构造与成矿学,44(2):192-202.
null 任文秀,罗建民,孙柏年,等,2018.化探数据挖掘在金矿找矿及靶区优选中的应用—以甘肃玉石山地区为例[J].岩石学报,34(11):3225-3234.
null 王怀涛,罗建民,王金荣,等,2018.基于大数据的基性—超基性岩定量分类及成矿预测研究——以北山地区为例[J].岩石学报,34(11):3195-3206.
null 王怀涛,杨婧,杜君,等,2019.甘肃北山和金川与铜镍矿床有关的超基性岩与全球板内环境超基性岩的对比:大数据研究的初步结果[J].地学前缘,26(4):94-108.
null 王玉玺,罗建民,王金荣,等,2018.甘肃敦煌地块基于岩浆岩(氧化物)信息的金找矿靶区定量优选[J].岩石学报,34(2):319-325.
null 王语,周永章,肖凡,等,2020.基于成矿条件数值模拟和支持向量机算法的深部成矿预测——以粤北凡口铅锌矿为例[J].大地构造与成矿学,44(2):222-230.
null 张旗,周永章,2018.大数据助地质腾飞:岩石学报2018第11期大数据专题“序”[J].岩石学报,34(11):3167-3172.
null 周永章,陈烁,张旗,等,2018.大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J].岩石学报,34(2):255-263.
null 张忠平,吴亚飞,李建威,2018.西秦岭地区大桥金矿床规划角砾岩的特征及成因[J].地质科技情报,37(2):79-88.
[1] Bin ZHANG,Jiajun LIU. Characteristics of the Ore-control Structure in the Zhaishang Gold Deposit in Western Qinling Region [J]. Gold Science and Technology, 2020, 28(6): 825-836.
[2] CAO Donghong,CUI Long, XIN Xiaojun, CHAO Yinyin. Ore-controlling Characteristics of Ducitile Shear Zone Structure in Mawu Gold Deposit,Western Qinling [J]. Gold Science and Technology, 2016, 24(6): 24-31.
[3] . Discussion on the Ore-forming Fluids and Materials Sources of Gold Deposit in Different Metallogenic Belt of Western Qinling Mountains [J]. Gold Science and Technology, 2015, 23(6): 37-47.
[4] ZHANG Fan,WANG Genhou,WANG Yang,ZHOU Jie,WU Chunjiao. Discussion on the Ore-control Structural Features of the Yangshan Gold Deposit in the Western Qinling Belt [J]. Gold Science and Technology, 2014, 22(6): 39-45.
[5] LIU Xinhui,CHEN Caihua,ZHAO Tianxin,ZHANG Keli,CHEN Lizi,LIU Shuang. Primary Geochemistry Characteristics and Metallogenic Prediction of Zhaishang Gold Deposit,West Qinling [J]. J4, 2012, 20(4): 7-15.
[6] LIU Dong-Hai, LIU Xin-Hui. Research on the Characteristics of Pyrite and its Gold -bearing Properties of Zhaishang Oversized Gold Deposit in Western Qinling [J]. J4, 2010, 18(6): 8-12.
[7] NIU Cui-Yi, XUE Wei-Min, LI Chao-Ru, QING Min. Prediction and Evaluation of the Comprehensive Information on the Gold Resource in Western Qinling Ore Belt [J]. J4, 2009, 17(2): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jin-Feng, LIU Mo-Jiang, LI Ding-Kun, LI Tian-Dong. [J]. J4, 2010, 18(4): 80 -81 .
[2] HU Qin-Xia, CHEN Kai, CHEN Chao, ZHANG Ku-Xiao. Analysis on Geological Features and Metallogenic Regularities of Nacheng Silver Gold Deposit in Guangdong[J]. J4, 2011, 19(1): 16 -20 .
[3] CHEN Li-Zi, CAO Dong-Hong, YANG De-Mei. Element Geochemical Characteristics of Guloushan Ore Section in Jinlongshan Gold Mine,Shaanxi Province[J]. J4, 2011, 19(1): 28 -33 .
[4] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .
[5] LIU Yu-Meng, LIU Nan, ZHANG Jie, SONG Yu-Bei, GONG Long-Ji, WANG Gang, LIU Xiao, ZHANG Hai-Fang. Study on Structure Characteristics and Ore-prospecting Direction of Yinggezhuang Gold Deposit[J]. J4, 2010, 18(6): 26 -29 .
[6] YI Youchang, MA Cai, LI Yuelong, PAN Tong, LUO Cairang, WANG Chunying. THE PLATE TECTONICS ENVIRONMENT AND METALLOGENESIS WITHIN QINGHAI[J]. J4, 2007, 15(1): 1 -9 .
[7] HU Qin-Xia, SUN Ban, GANG Yu, LI Chu-Fang, ZHANG Ku-Xiao. Geological Features and Genesis of Beijinshan Gold Deposit,Gansu Province[J]. J4, 2010, 18(6): 18 -21 .
[8] LIN Hai-Ping. The Tectonic Evolution of Shear Zone and Gold Mineralization of Hetai Gold Mine[J]. J4, 2010, 18(6): 30 -33 .
[9] ZHANG Chao, XIAO Xiao-Jiang. Geochemical Characteristics of Granite in Ningchanhe Area,North Qilian[J]. Gold Science and Technology, 2011, 19(1): 6 -10 .
[10] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .