img

Wechat

Adv. Search

Gold Science and Technology ›› 2015, Vol. 23 ›› Issue (5): 47-52.doi: 10.11872/j.issn.1005-2518.2015.05.047

Previous Articles     Next Articles

Analysis of the Stability for Mine Tailings Dam Based on PCA-BP Neural Network

CHEN Jianhong,ZHU Dingyao,CHEN Yijun,YE Aming,QIU Wen   

  1. School of  Resources and Safety Engineering,Central South University,Changsha     410083,Hunan,China
  • Received:2014-11-20 Revised:2015-03-18 Online:2015-10-28 Published:2015-12-09

Abstract:

The characteristics of the influence factors for the stability of mine tailings dam is complex variabily,uncertain and nonlinear.For the purpose of guaranteeing the stability of the tailings and preventing mine tailings dam accident effectively,an analysis model of the stability for mine tailings dam based on PCA-BP neural network is established.The original data from multiple mine tailings dam instability instance is standardized to determine the principle component by using SPSS software,then we use the principle component as a BP input sample to train simulation by using MATLAB software.The data shows that preprocessing the original sample by using PCA algorithm before the BP training can effectively improve the training speed and precision,the PCA-BP neural network model is feasible in the analysis of the stability for mine tailings dam.

Key words: mine tailings dam, principal component analysis, BP neural network, SPSS, MATLAB

CLC Number: 

  • X753

[1] 曲业兵.关于尾矿库的建设与环境保护问题的思考[J].环境保护与循环经济,2011,31(11):65-68.
[2] 迟继松,郭伟,王月伟,等.山东蓬莱矿业选矿厂尾矿堆放及排水方式探讨[J].黄金科学技术,2011,19(6):72-74.
[3] 杨波.尾矿库在线安全监测及预警关键技术研究[D].武汉:中国地质大学,2012.
[4] 肖慧,盛建龙,姚尧.基于GEO-SLOPE的某尾矿库稳定性分析[J].现代矿业,2010,(7):67-69.
[5] 李全明,张兴凯,王云海,等.尾矿库溃坝风险指标体系及风险评价模型研究[J].水利学报,2009,40(8):989-994.
[6] 华继钊,王建国,杨静宇.基于PCA的边缘检测方法[J].中国图像图形学报,2009,14(5):912-919.
[7] 刘学元,孙焕英,黄再心,等.ETM遥感数据在白音吉日嘎拉—阿尔萨拉一带1∶5万地质调查中的应用[J].黄金科学技术,2015,23(1):61-65.
[8] 金豫杰.基于BP神经网络的公路隧道交通量预测[J].广西科技大学学报(自然科学版),2005,16(增):28-31.
[9] 何键.尾矿库边坡稳定状况远程监测系统研究与设计[D].赣州:江西理工大学,2014.
[10] 袁骏,张明敏,孙进才.基于PCA 和BP 神经网络的水下目标识别方法研究[J].海军工程大学学报,2005,17(1):101-104.
[11] 朱志洁,张宏伟,韩军,等.基于PCA-BP神经网络的煤与瓦斯突出预测研究[J].中国安全科学学报,2013,23(4):45-50.
[12] 蔡红,陈荣耀.基于PCA-BP神经网络的股票价格预测研究[J].计算机仿真,2011,28(3):365-369.
[13] 李英龙,严碧.SPSS统计软件包在矿山统计分析中的应用[J].黄金,2000,21(5):17-20.
[14] 袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999:30-55.
[15] 王英博,王琳,李仲学.基于HS-BP算法的尾矿库安全评价[J].系统工程理论与实践,2012,32(11):2585-2590.
[16] Niculescu S P.Artificial neural networks and genetic algorithms in QSAR[J].Journal of Molecular Structure:Theochem,2003,622(1/2):71-83.
[17] 林在贯.岩土工程手册[M].北京:中国建筑工业出版社,1994:20-24.
[18] 王世鹏.基于BP人工神经网络的尾矿库坝体稳定性预测研究[C]//2010国际安全科学与技术学术研讨会论文集.沈阳:东北大学,2010:794-798.
[19]  徐自祥,周德云,罗奕然.基于主成分的模糊神经网络[J].计算机工程与应用,2006,42(5):34-36.

[1] Shuai ZHANG, Xin ZHAO, Xiangyu PENG, Yubin WANG, Wanting GUI, Jiayi TIAN. Prediction of the Recovery Rate of a Gold Mine Based on Double Hidden Layer BP Neural Network [J]. Gold Science and Technology, 2024, 32(1): 170-178.
[2] Changwei ZHOU, Xianping XIE, Xidong DU. Research on the Prediction of CO Concentration in Single-head Roadway Based on Curve Fitting and Neural Network [J]. Gold Science and Technology, 2024, 32(1): 75-81.
[3] Shan YANG,Wenwen LI,Jianhong CHEN. Study on Spontaneous Combustion Safety of Sulfide Ore Based on PCA-RBF Network Model [J]. Gold Science and Technology, 2022, 30(6): 958-967.
[4] Raoqing XIE, Jianhong CHEN, Wenfeng XIAO. Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network [J]. Gold Science and Technology, 2022, 30(2): 272-281.
[5] Feng GAO,Xiaodong WU,Keping ZHOU. Prediction Model of Soil Dump Stability Based on Principal Component Analysis and PSO-ELM Algorithm [J]. Gold Science and Technology, 2021, 29(5): 658-668.
[6] Zhengshan LUO,Renhui HUANG,Guochen SHEN. Research on Wear Risk Prediction of Filling Pipeline Based on KPCA-IPSO-LSSVM [J]. Gold Science and Technology, 2021, 29(2): 245-255.
[7] Rui XU, Kuikui HOU, Xi WANG, Xingquan LIU, Xibing LI. Combined Prediction Model of Rockburst Intensity Based on Kernel Principal Component Analysis and SVM [J]. Gold Science and Technology, 2020, 28(4): 575-584.
[8] Chaomin CHEN,Chengbiao LENG,Guohui SI. Comprehensive Metallogenic Prediction Based on GIS and Analytic Hierarchy Process:A Case Study of Kumishi Region in Xinjiang [J]. Gold Science and Technology, 2020, 28(2): 213-227.
[9] Jinge BU,Jianhong CHEN. Based on Particle Swarm Algorithm to Optimize the BP Neural Network of Leaching Rate Prediction in Leaching Mining [J]. Gold Science and Technology, 2020, 28(1): 82-89.
[10] Chaoqun HAN,Jianhong CHEN,Zhiyong ZHOU,Shan YANG. Research on Prediction of Rock Mass Blastability Classification Based on PCA-SVM Model [J]. Gold Science and Technology, 2019, 27(6): 879-887.
[11] Shi WANG,Yi TANG,Xiao FENG. Risk Assessment of Filling Pipeline Wearing Based on Improved PCA and Ordered Multi-class Logistic [J]. Gold Science and Technology, 2019, 27(5): 740-746.
[12] Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG. Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm [J]. Gold Science and Technology, 2019, 27(4): 581-588.
[13] Xueliang DUAN,Fengshan MA,Haijun ZHAO,Jie GUO,Hongyu GU,Shuaiqi LIU. Study on Water Sources Identification and Mixing Ratios of Mine Water [J]. Gold Science and Technology, 2019, 27(3): 406-416.
[14] Xiaodan SUI,Zhouquan LUO,Yaguang QIN,Yule WANG,Dong PENG. Study on Prediction Method of Seepage Line of Tailings Dam Based on Wavelet Decomposition [J]. Gold Science and Technology, 2019, 27(1): 137-143.
[15] ZHOU Zhiyong, XIAO Wei, CHEN Jianhong, LI Huan. Prediction Model of Mine Ecological Environment Based on PCA and GM(1,1) [J]. Gold Science and Technology, 2018, 26(3): 372-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!