Adv. Search

Gold Science and Technology

Previous Articles     Next Articles

Study on Natural Caving Mining Method Based on Multi-numerical  Simulation Method

ZENG Qingtian1,2,LIU Kewei1,YAN Ti2,WANG Liguan1   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha   410083,Hunan,China;
    2.Yuxi Mining Co., Ltd.,Yuxi   653100,Yunnan,China
  • Received:2014-09-09 Revised:2014-10-25 Online:2015-02-28 Published:2015-04-07


With the restriction of complex geological conditions and because of the high technical level of natural caving mining method,a lot of preliminary work on mining theory study and technology research has to be carried out before actual natural caving mining operations.In order to realize the scientific and effective application of natural caving mining technology,various functional advantages of numerical analyzing software have been fully exploited in this paper.Taken the actual application of natural caving mining method in Xuejiping copper mine as an example,with the help of the superior modeling function of MIDAS,the complex mechanical calculation model has been established.Meanwhile,by using the coupling technology of MIDAS and FLAC3D,the conversion of numerical calculation model from MIDAS to FLAC3D has been realized.The caving area for natural caving mining has been simulated and calculated in FLAC3D.By using the particle flow discrete element method in PFC2D software,ore drawing process has been simulated,and then the rationality of poly-draw-points drawing method and the suitable drawing intervals have been analyzed.Therefore,by the joint application of numerical analysis software,numerical calculation in natural caving mining and the simulation of drawing process have been realized. It is of great guiding importance in actual application of natural caving mining technology.

Key words: numerical simulation, MIDAS software, FLAC3D software, natural caving mining method, particle flow, PFC2D software

CLC Number: 

  • TD853

[1] Yasitli N E,Unver B.3D numerical modeling of longwall mining with top-coal caving[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):219-235.
[2] Zhang S,Tong G.Influence of irregular boundary weakening on the block caving process[J].International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1995,32(2):135-142.
[3] 冯兴隆.自然崩落法矿岩工程质量数字化评价及模拟技术研究[D].长沙:中南大学,2010.
[4] 何昌盛.基于岩体结构特征分析的可崩性分级研究[J].采矿与安全工程学报,2012,29(6):845-851.
[5] 李立明,潘长良.矿体可崩性评价的信息累积法[J].中南大学学报:自然科学版,1998,29(4):323-325.
[6] 朱建新.自然崩落法矿体可崩性分级研究[J].江西理工大学学报,1995,16(4):1-7.
[7] 潭贤志,李海波.矿块崩落法矿体崩落状态监测[J].黄金科学技术,1999,7(增):106-108.
[8] 于少峰,吴爱祥,韩斌.自然崩落法在厚大破碎矿体中的应用[J].金属矿山,2012,(9):1-4.
[9] 王福坤.自然崩落法在中厚矿体中的应用研究[J].矿业研究与开发,1994,14(3):21-24.
[10] 荆永滨.矿床三维地质混合建模与属性插值技术的研究及应用[D].长沙:中南大学,2010.
[11] 马紫娟.基于拉格朗日差分法的露天边坡稳定性研究[D].长沙:中南大学,2009.
[12] 寇向宇,贾明涛,王李管,等.基于CMS及DIMINE-FLAC3D耦合技术的采空区稳定性分析与评价[J].矿业工程研究,2010,25(1):31-35.
[13] 房智恒,王李管,熊张友.基于Micromine-FLAC3D 耦合技术的金属矿采矿扰动影响分析[J].采矿与安全工程学报,2012,29(6):870-875.
[14] 刘科伟,李夕兵,宫凤强,等.基于CALS及Surpac-FLAC3D耦合技术的复杂空区稳定性分析[J].岩石力学与工程学报,2008,27(9):1924-1931.
[15] 李爱兵,李庶林,陈际经,等.柿竹园多金属矿床开采方案确定的数值模拟研究[J].岩土力学,2004,25(增):463-467.
[16] 钱志军,徐长佑.自然崩落法矿体崩落过程的数值模拟[J].化工矿物与加工,1993,22(1):21-25.
[17] Pierce M E,Cundall P A.PFC3D modeling of caved rock under draw,numerical modeling in micromechanics via particle methods[C]//Proceedings of the 1st International PFC Symposium.Gelsenkirchen:The chemieal Rubber Company Press,2002:211.
[18] 王连庆,高谦,王建国,等.自然崩落采矿法的颗粒流数值模拟[J].北京科技大学学报,2007,29(6):557-561.
[19] 王培涛,杨天鸿,柳小波.无底柱分段崩落法放矿规律的PFC2D模拟仿真[J].金属矿山,2010,(8):123-127.
[20] 安龙,徐帅,李元辉,等.基于多方法联合的崩落法崩矿步距优化[J].岩石力学与工程学报,2013,32(4):754-759.

[1] SHI Caixing, GUO Lijie, LI Wenchen, ZHANG Dan. Study on Filling Cementitious Materials Based on Lead-Zinc Smelting Slag and Its Application [J]. Gold Science and Technology, 2018, 26(2): 160-169.
[2] LIU Dingyi, WANG Liguan, CHEN Xin, ZHONG Deyun, XU Zhiqiang. Study on Multi Objective Optimization and Application of Medium and Long Term Plan for Underground Mine [J]. Gold Science and Technology, 2018, 26(2): 228-233.
[3] LIN Ge, GONG Fengqiang. Research on Evaluation Index of Red Sandstone Instability Under Different Stress [J]. Gold Science and Technology, 2018, 26(2): 195-202.
[4] CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98.
[5] DING Jianfeng. Research on the Ore Bunker Treatment of a Gold Mine [J]. Gold Science and Technology, 2017, 25(4): 52-57.
[6] LI Zongnan,GUO Lijie,YU Bin,SHI Caixing. Shearing Thinning Behavior of High Concentration Slurry Based on Bingham Model [J]. Gold Science and Technology, 2017, 25(4): 33-38.
[7] BAI Zhaoyang,WANG Guowei,ZHANG Peng,LIU Shuanping. Research on Pillaring Blasting Location Under Level Gob Group Conditions [J]. Gold Science and Technology, 2017, 25(4): 81-86.
[8] XU Huaihao,LI Jinyou. Application Practice of Increasing Production and Reducing Consumption in Grinding System of Dayingezhuang Gold Mine [J]. Gold Science and Technology, 2017, 25(3): 116-120.
[9] WANG Xinmin,RONG Shuai,ZHAO Maoyang,ZHANG Qinli . Concentration Equipment Optimization Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2017, 25(3): 77-83.
[10] LIU Zhixiang,GONG Yongchao,LI Xibing. Study on the Backfilling Material Properties Based on Fractal Theory and BP Neural Network [J]. Gold Science and Technology, 2017, 25(2): 38-44.
[11] HU Jianhua,YANG Chun,ZHOU Bingren,ZHOU Keping,ZHANG Shaoguo. Simulation of Fracture Propagation and Optimization of Parameters for Smooth Blasting of Coping in Roadway [J]. Gold Science and Technology, 2017, 25(2): 45-53.
[12] JIA Mintao,WANG Qunfang,WU Lengjun. Research Status and Prospect of Thermal Environmental Control Technology Under Deep Mining [J]. Gold Science and Technology, 2017, 25(2): 83-88.
[13] XIAO Weijing,CHEN Chen,LI Yongxin,WANG Xiaojun,CAO Shirong,HAN Jianwen. Creep Experiment and Model of Deep Limestone Under Step Loading [J]. Gold Science and Technology, 2017, 25(2): 76-82.
[14] CAO Shirong,HAN Jianwen,XIAO Weijing,ZHUO Yulong,WANG Xiaojun,FENG Xiao. Study on Stress-Strain Relationship of Cemented Backfilling with Different Aggregate Content [J]. Gold Science and Technology, 2017, 25(1): 93-98.
[15] ZHAO Guoyan,HOU Jun,ZHANG Xiaorui,LI Diyuan,WANG Tao. Study on the Mechanical Properties of the Phosphogypsum Paste Filling Material [J]. Gold Science and Technology, 2016, 24(5): 7-12.
Full text



No Suggested Reading articles found!