收稿日期: 2015-11-14
修回日期: 2015-12-20
网络出版日期: 2016-04-05
基金资助
国家自然科学基金项目“循环载荷下矿山固废胶结充填体损伤过程声发射特性研究”(编号:51304083)、江西省科技支撑计划“急倾斜薄脉群钨矿床开采岩体失稳控制技术集成与示范”(编号:20141BBE50005)和江西省创新基金“化学置换过程离子型稀土矿体力学性状演化规律研究”(编号:YC2015-S294)联合资助
Application of the WNN Model to Prediction of Acoustic Emission Signal
Received date: 2015-11-14
Revised date: 2015-12-20
Online published: 2016-04-05
王晓军 , 陈辰 , 卓毓龙 , 邓书强 , 冯萧 . WNN模型在预测声发射信号方面的应用[J]. 黄金科学技术, 2016 , 24(1) : 86 -91 . DOI: 10.11872/j.issn.1005-2518.2016.01.086
Wavelet neural network has advantages of high precision,simple structure and fast convergence,etc. Therefore,attempts with this advantage model is applied to forecast aspect of acoustic emission,and the new predicting method in mining field be further improved.Based on a huge number of data in the process of coustic emission at laboratory rock loading experiment,a corresponding prediction model can be set up.Firstly,acoustic emission data obtained in the process of monitoring of laboratory experiments can be used to establish Wavelet Neural Network Model,and the acoustic emission monitoring of acoustic emission events rate for network autonomous learning can be further conducted.Finally,the obtained prediction results were compared with the actual value in order to calculate the error.The results demonstrated that the prediction accuracy was higher, and basically comparable with the actual monitoring results,which suggested that the Wavelet Neural Network Model can be employed to predict the acoustic emission signal in future.
Key words: acoustic emission; rock; Wavelet Neural Network; prediction
[1] 李守臣,王登刚.基于神经网络的岩体渗透系数反演方法及其工程应用[J].岩石力学与工程学报,2002,21(4):479-483.
[2] 过江,张碧肖.基于PCA与BP神经网络的充填管道失效 风险评估[J].黄金科学技术,2015,23(5):66-71.
[3] Yang J W, Chen X G,Jin H P.Online prediction for conta-mination of chlortetracycline fermentation based on Dezert-Smarandache theory[J].Chinese Journal of Chemical Engineering,2015,23(6):1009-1016.
[4] 李新春,张幼蒂.露天采矿工艺方法选择的神经网络模糊 决策系统研究[J].黄金科学技术,1999,7(4/5):39-41.
[5] 焦李成.神经网络系统理论[M].西安:西安电子科技大学 出版社,1990.
[6] Li B J,Cheng C T.Monthly discharge forecasting using wavelet neural networks with extreme learning machine[J].Science China Technological Sciences,2014,57(12):2441-2452.
[7] 刘洪波,张宏伟,闫晓强.城市供水管网水量预测的小波神经网络方法[J].天津大学学报(自然科学与工程技术版),2005,38(7):636-639.
[8] 纪洪广,张天森,孙雪峰,等.利用人工神经网络模型进行脆性材料临界断裂的声发射预报[J].黄金科学技术,1999,7(4/5):48-50.
[9] 黄敏,王建辉,顾树生.基于遗传小波神经网络的冷轧轧制力预报研究[J].控制与决策,2004,19(10):1129-1132.
[10] 陈炳武,王英超,李怀京,等.小波分析在激电数据处理中的应用[J].黄金科学技术,2012,20(3):80-85.
[11] 谭云亮,孙中辉,杜学东.冲击地压AE时间序列小波神经网络预测模型[J].岩石力学与工程学报,2000,19(增):1034-1036.
[12] 任松,白月明,姜德义,等.周期荷载作用下盐岩声发射特征试验研究[J].岩土力学,2012,33(6):1613-1618.
[13] 姜德义,陈结,任松,等.盐岩单轴应变率效应与声发射特征试验研究[J].岩石力学与工程学报,2012,31(2):326-336.
[14] 李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
[15] 裴建良,刘建锋,张茹,等.单轴压缩条件下花岗岩声发射事件空间分布的分维特征研究[J].四川大学学报(工程科学版),2010,42(6):51-55.
[16] 彭琦,张茹,谢和平,等.基于AE时间序列的岩爆预测模型[J].岩土力学,2009,30(5):1436-1440.
/
〈 | 〉 |