收稿日期: 2014-09-09
修回日期: 2014-10-25
网络出版日期: 2015-04-07
基金资助
国家自然科学基金青年基金项目“基于连续退化计算的各向异性岩体爆破损失研究”(编号:51304239)与云南省科技创新平台建设计划“云南省铜矿物加工工程技术研究中心”(编号:2010DH005)联合资助
Study on Natural Caving Mining Method Based on Multi-numerical Simulation Method
Received date: 2014-09-09
Revised date: 2014-10-25
Online published: 2015-04-07
受复杂地质条件影响,自然崩落法因其技术含量高,在实际生产应用前,需开展大量的理论和开采技术研究工作。为实现自然崩落开采技术在矿床开采中的科学有效应用,充分利用多种数值分析软件各自的功能优势,以雪鸡坪铜矿自然崩落法研究为例,利用MIDAS优越的建模功能,建立了复杂力学计算模型,并通过MIDAS和FLAC3D的耦合技术,实现MIDAS到FLAC3D数值计算模型的转换,采用FLAC3D软件对矿区自然崩落法开采崩落范围进行了数值模拟与计算,并采用颗粒流离散元PFC2D软件对放矿过程进行了模拟,分析了多斗均衡放矿方式和放矿步距的合理性,通过多数值分析软件的联合应用,完成了对矿区自然崩落开采工艺的数值计算与放矿过程模拟,对于指导矿山自然崩落采矿工艺的应用具有重要的意义。
曾庆田 , 刘科伟 , 严体 , 王李管 . 基于多数值模拟方法联合的自然崩落法开采研究[J]. 黄金科学技术, 2015 , 23(1) : 66 -73 . DOI: 10.11872/j.issn.1005-2518.2015.01.066
With the restriction of complex geological conditions and because of the high technical level of natural caving mining method,a lot of preliminary work on mining theory study and technology research has to be carried out before actual natural caving mining operations.In order to realize the scientific and effective application of natural caving mining technology,various functional advantages of numerical analyzing software have been fully exploited in this paper.Taken the actual application of natural caving mining method in Xuejiping copper mine as an example,with the help of the superior modeling function of MIDAS,the complex mechanical calculation model has been established.Meanwhile,by using the coupling technology of MIDAS and FLAC3D,the conversion of numerical calculation model from MIDAS to FLAC3D has been realized.The caving area for natural caving mining has been simulated and calculated in FLAC3D.By using the particle flow discrete element method in PFC2D software,ore drawing process has been simulated,and then the rationality of poly-draw-points drawing method and the suitable drawing intervals have been analyzed.Therefore,by the joint application of numerical analysis software,numerical calculation in natural caving mining and the simulation of drawing process have been realized. It is of great guiding importance in actual application of natural caving mining technology.
[1] Yasitli N E,Unver B.3D numerical modeling of longwall mining with top-coal caving[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):219-235.
[2] Zhang S,Tong G.Influence of irregular boundary weakening on the block caving process[J].International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1995,32(2):135-142.
[3] 冯兴隆.自然崩落法矿岩工程质量数字化评价及模拟技术研究[D].长沙:中南大学,2010.
[4] 何昌盛.基于岩体结构特征分析的可崩性分级研究[J].采矿与安全工程学报,2012,29(6):845-851.
[5] 李立明,潘长良.矿体可崩性评价的信息累积法[J].中南大学学报:自然科学版,1998,29(4):323-325.
[6] 朱建新.自然崩落法矿体可崩性分级研究[J].江西理工大学学报,1995,16(4):1-7.
[7] 潭贤志,李海波.矿块崩落法矿体崩落状态监测[J].黄金科学技术,1999,7(增):106-108.
[8] 于少峰,吴爱祥,韩斌.自然崩落法在厚大破碎矿体中的应用[J].金属矿山,2012,(9):1-4.
[9] 王福坤.自然崩落法在中厚矿体中的应用研究[J].矿业研究与开发,1994,14(3):21-24.
[10] 荆永滨.矿床三维地质混合建模与属性插值技术的研究及应用[D].长沙:中南大学,2010.
[11] 马紫娟.基于拉格朗日差分法的露天边坡稳定性研究[D].长沙:中南大学,2009.
[12] 寇向宇,贾明涛,王李管,等.基于CMS及DIMINE-FLAC3D耦合技术的采空区稳定性分析与评价[J].矿业工程研究,2010,25(1):31-35.
[13] 房智恒,王李管,熊张友.基于Micromine-FLAC3D 耦合技术的金属矿采矿扰动影响分析[J].采矿与安全工程学报,2012,29(6):870-875.
[14] 刘科伟,李夕兵,宫凤强,等.基于CALS及Surpac-FLAC3D耦合技术的复杂空区稳定性分析[J].岩石力学与工程学报,2008,27(9):1924-1931.
[15] 李爱兵,李庶林,陈际经,等.柿竹园多金属矿床开采方案确定的数值模拟研究[J].岩土力学,2004,25(增):463-467.
[16] 钱志军,徐长佑.自然崩落法矿体崩落过程的数值模拟[J].化工矿物与加工,1993,22(1):21-25.
[17] Pierce M E,Cundall P A.PFC3D modeling of caved rock under draw,numerical modeling in micromechanics via particle methods[C]//Proceedings of the 1st International PFC Symposium.Gelsenkirchen:The chemieal Rubber Company Press,2002:211.
[18] 王连庆,高谦,王建国,等.自然崩落采矿法的颗粒流数值模拟[J].北京科技大学学报,2007,29(6):557-561.
[19] 王培涛,杨天鸿,柳小波.无底柱分段崩落法放矿规律的PFC2D模拟仿真[J].金属矿山,2010,(8):123-127.
[20] 安龙,徐帅,李元辉,等.基于多方法联合的崩落法崩矿步距优化[J].岩石力学与工程学报,2013,32(4):754-759.
/
〈 |
|
〉 |