img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (6): 802-815.doi: 10.11872/j.issn.1005-2518.2019.06.802

• 矿产勘查与资源评价 • 上一篇    下一篇

新疆大红柳滩地区伟晶岩型锂铍资源潜力分析

王记周1(),燕洲泉2,徐磊1,李侃2,李元茂1,郑耀文1,王怀涛1,王玉玺1   

  1. 1. 甘肃省地质调查院,甘肃 兰州 730000
    2. 中国地质调查局西安地质调查中心,陕西 西安 710054
  • 收稿日期:2019-05-30 修回日期:2019-06-25 出版日期:2019-12-31 发布日期:2019-12-24
  • 作者简介:王记周(1982-),男,河南周口人,工程师,从事化探矿产研究工作。85121911@ qq.com
  • 基金资助:
    中国地质调查局项目“新疆和田地区火烧云—大红柳滩铅锌锂大型资源基地综合调查评价”(DD20179606-1)

Potential Evaluation of Pegmatite-type Lithium-Beryllium Mineral Resources in Dahongliutan,Xinjiang

Jizhou WANG1(),Zhouquan YAN2,Lei XU1,Kan LI2,Yuanmao LI1,Yaowen ZHENG1,Huaitao WANG1,Yuxi WANG1   

  1. 1. Geology Survey of Gansu Province,Lanzhou 730000,Gansu,China
    2. Xi’an Center of Geological Survey,China Geological Survey,Xi’an 710054,Shaanxi,China
  • Received:2019-05-30 Revised:2019-06-25 Online:2019-12-31 Published:2019-12-24

摘要:

近年来新疆西昆仑地区锂铍等稀有金属矿产的找矿工作取得了重大突破,已发现多处具有大型—超大型找矿前景的锂铍等稀有金属矿床(点),有望成为西北地区乃至全国重要的锂铍矿产资源基地。新疆大红柳滩地区锂铍矿床以伟晶岩型为主,多个伟晶岩型锂铍矿床正在开展调查评价项目,取得较好的找矿成果,显示出巨大的锂铍资源潜力。因此,在研究区开展矿产资源潜力评价,有利于了解研究区内的锂铍资源量,为下一步锂铍矿系统查证工作提供依据。在系统收集资料和野外地质调查的基础上,开展了大红柳滩地区伟晶岩型锂等稀有金属矿成矿规律的综合研究,选取阿克塔斯稀有金属矿床为典型矿床,将典型矿床单位体积内锂铍矿产资源平均含量的估计值,外推到预测区的体积范围内,估计预测区内的锂铍矿产资源量。进而在大红柳滩地区圈定出35个伟晶岩型锂等稀有金属矿最小预测区,其中A类5个、B类8个、C类22个。在新疆大红柳滩一带预测350 m以浅Li2O资源总量为913.61×106 t,BeO资源总量为27.18×106 t。

关键词: 花岗伟晶岩脉, 资源潜力评价, 阿克塔斯, 大红柳滩, 锂铍, 最小预测区

Abstract:

Rare metals are the key mineral resources of strategic emerging industries,which play an irreplaceable role in both the high-end equipment manufacturing industry and the field of new energy vehicles.In recent years, mineral geological survey work of lithium and other rare metal deposits have made breakthrough in West Kunlun,Xinjiang.Several lithium-beryllium and other rare metal ore deposits with large-scale and super-large prospecting prospets have been found.It is expected to become a lithium-beryllium emerging strategic mineral resources base in northwest and even the whole China.In Dahongliutan area,the main type of lithium-beryllium deposit is pegmatite-type.In view of many pegmatite type lithium-beryllium deposits,investigation and evaluation projects are being carried out,and good prospecting results are obtained.It shows that the potential of lithium-beryllium is huge in Dahongliutan area.However,there are few research reports on the resource potential analysis of pegmatite type lithium-beryllium deposits in this area.Therefore,the evaluation of the potential of mineral resources is helpful to find out the amount of lithium-beryllium resources in the study area,and provides the basis for systematic investigate.Based on the systematic data collection,field investigation and comprehensive research,this paper analyzed and evaluated the resource potential of pegmatite-type lithium-beryllium mineral in Dahongliutan area.The latest mineral resources potential evaluation method(geologic volumetric methods) was used in this study.Geologic volumetric methods is the average content of lithium beryllium mineral resources per unit volume of a typical deposit is extrapolated to the volume of the predicted area to estimate the amount of lithium beryllium mineral resources in the predicted area.And then,35 minimum prediction areas was circled,including 5 class A,8 class B and 22 class C.The resource reserves shallower than 350 m for Li2O and BeO were estimated to be 913.61×106 t and 27.18×106 t in Dahongliutan area.

Key words: granite-pegmatite dikes, resource potential evaluation, Aketasi, Dahongliutan, lithium-beryllium, minimum prediction areas

中图分类号: 

  • P618.7

图1

大红柳滩地区大地构造位置图1.二叠系黄羊岭群;2.三叠系巴颜喀拉山群;3.古生界康西瓦岩群;4.寒武纪花岗岩;5.三叠纪二长花岗岩;6.花岗伟晶岩脉群;7.阿克塔斯锂矿;8.主要断裂;9.研究区"

图2

阿克塔斯矿区地质简图1.坡积物;2.冲洪积砂砾土;3.上三叠统巴颜喀拉山群第五岩性段;4.上三叠统巴颜喀拉山群第四岩性段;5.上三叠统巴颜喀拉山群第三岩性段;6.上三叠统巴颜喀拉山群第二岩性段;7.上三叠统巴颜喀拉山群第一岩性段;8.花岗伟晶岩脉;9.晚三叠世二云母花岗岩;10.含锂矿体;11.矿脉群范围"

图3

HS-15综合地球化学异常剖析图1.第四系冲洪积;2.三叠系巴颜喀拉山岩群上段;3.三叠系巴颜喀拉山岩群中段;4.古元古界康西瓦岩群A岩组一段;5.晚三叠世中细粒二云母花岗岩;6.实测断层/推测断层;7.伟晶岩脉;8.阿克塔斯锂矿区"

表1

大红柳滩式伟晶岩型锂等稀有金属矿区域预测要素"

要素特征描述要素类型
构造位置康西瓦断裂与大红柳滩—郭扎错深大断裂之间的可可西里—巴颜喀拉断褶带必要
区域成矿带大红柳滩 RM-Fe-Pb-Zn-Cu-白云母矿带重要
成矿环境晚三叠世大红柳滩一带处于同碰撞环境,在碰撞挤压作用下含锂等稀有金属的结晶基底加厚并发生大规模重熔,形成含锂等稀有金属的二云母花岗岩岩浆,岩浆演化后期富锂等稀有元素、富水、富挥发份的流体沿走向节理为主的褶皱后期节理侵入,尤以花岗伟晶岩之内外接触带、破碎带等薄弱部位充填、交代,形成富含稀有金属的硅酸盐矿物必要
成矿时代晚三叠世必要
成矿地质体特征晚三叠世二云母花岗岩及其后期残余热液形成的花岗伟晶岩脉,脉体多呈脉状或透镜状,规模较小,长数米至数百米,宽数米至数十米必要
矿石组合特征锂辉石、钠长石及石英、钾长石和锂白云母等;存在结构分带,一般具文象、似文象结构带、块体微斜长石带、白云母一石英带等3个带必要
成矿构造或成矿结构面NW向大断裂以及由其控制形成的伟晶岩脉侵入体构造系统为其成矿构造,地层节理是其成矿结构面必要
矿体特征矿体形态明显受NW向和近EW向节理控制,沿走向节理的伟晶岩脉含矿富,而垂直走向节理的伟晶岩脉含矿贫,在节理交叉部位矿体明显变厚、品位变富。矿体多呈脉状或透镜状,规模较小,长数米至数百米,厚数米至数十米,向下矿体变薄,矿体产状与岩相带产状基本一致重要
矿石特征矿石的金属矿物主要有锂辉石、锂白云母、磷锂铝石、绿柱石、铌钽铁矿、钽铌铁矿、锡石、氧化锰铁、电气石、纤铁矿、氯银矿等;矿石结构主要为细粒伟晶结构、中粗粒伟晶结构、巨晶结构、滴状结构等;矿石构造主要为条带状构造、块状构造重要
矿石质量矿石中有用组分主要为锂,伴生组分为铍、铌、钽和铷必要
次生蚀变钠长石化作用也较强烈,对成矿十分有利重要
矿化期及矿化阶段分为K(Na)、Na(K)、Na-Li、Na(K)、Li-Rb和Si共6个成矿阶段。其中Na-Li阶段为主要成矿阶段,形成叶钠长石—锂辉石带和石英—锂辉石带必要
成因类型伟晶岩型必要
地球化学异常套合较好的Li、Be、Ta、Nb、Rb和Cs等稀有元素化探异常重要
遥感异常伟晶岩脉具很高的光谱反射率,一般表现为白色或浅色调,脉状影纹特征重要
区域预测模型成矿地质背景+伟晶岩型锂等稀有金属矿床(点)+伟晶岩脉+(Li、Be、Ta、Nb、Rb和Cs为主)化探异常+具很高的光谱反射率,一般表现为白色或浅色调,脉状影纹特征

图4

大红柳滩式伟晶岩型锂等稀有金属矿区域预测模型图1.第四系;2.巴颜喀拉山群下段;3.巴颜喀拉山群中段;4.巴颜喀拉山群上段;5.片理化带;6.早—中二叠世黄羊岭群上组第四段;7.晚三叠世黑云母花岗岩;8.含锂辉石伟晶岩脉;9.锂矿床(点);10.巴颜喀拉山群中NW向地层节理;11.断层/推测断层;12.含矿热液"

表2

阿克塔斯稀有金属矿床91号矿体查明资源量及估算参数"

估算参数参数值
查明矿石资源储量/t3 414 427
查明金属量储量/tLi2O:55 029.34;BeO:1 633.56
面积/km272 130
延深/m149
品位/%Li2O:1.61;BeO:0.048
体重/(t·m-32.59
体积含矿率(t·m-3Li2O:0.00512;BeO:0.000152

表3

阿克塔斯稀有金属矿床91号矿体深部预测资源量"

估算参数参数值
预测深度/m186
预测面积/m272 130
体积含矿率/(t·m-3Li2O:0.00512;BeO:0.000152
预测新增资源量/tLi2O:13 667;BeO:409

表4

模型区估算参数"

参数参数取值
模型区名称阿克塔斯91号矿体所在预测区(DZX0)
经度79°11′04″E
纬度35°57′38″N
预测资源总量/tLi2O:68 696;BeO:2 042
面积/m272 130
地质体延深/m186
含矿地质体体积含矿率/(t·m-3Li2O:0.005120;BeO:0.000152

图5

大红柳滩一带锂铍最小预测区分布图(据文献[23]修改)"

表5

大红柳滩一带锂铍最小预测区特征统计"

序号预测区编号圈定依据预测区面积/m2面积系数相似系数
1DZX0矿床+伟晶岩脉+化探异常+遥感异常55 7640.341
2DZX1矿床+伟晶岩脉+化探异常+遥感异常72 1590.341
3DZX2矿点+伟晶岩脉+化探异常98 2690.340.68
4DZX3矿点+伟晶岩脉+化探异常36 7780.340.68
5DZX4矿点+伟晶岩脉+化探异常26 4820.340.76
6DZX5矿点+伟晶岩脉+化探异常+遥感异常562 9500.340.95
7DZX6矿点+伟晶岩脉+化探异常+遥感异常193 4070.340.8
8DZX7矿床+伟晶岩脉+化探异常+遥感异常2 148 3480.341
9DZX8矿床+伟晶岩脉+化探异常+遥感异常1 333 9680.341
10DZX9矿点+伟晶岩脉+化探异常53 2950.340.95
11DZX10矿床+伟晶岩脉+化探异常+遥感异常3 211 8520.341
12DZX11矿点+伟晶岩脉+化探异常103 3330.340.95
13DZX12矿点+伟晶岩脉+化探异常+遥感异常197 7660.340.95
14DZX13伟晶岩脉+化探异常426 4820.340.8
15DZX14伟晶岩脉+化探异常+遥感异常509 0910.340.8
16DZX15伟晶岩脉+化探异常+遥感异常78 4420.340.63
17DZX16伟晶岩脉+化探异常89 3960.340.63
18DZX17伟晶岩脉+化探异常+遥感异常850 5130.340.8
19DZX18伟晶岩脉+化探异常29 0710.340.8
20DZX19伟晶岩脉+化探异常134 9930.340.8
21DZX20伟晶岩脉+化探异常38 0290.340.8
22DZX21伟晶岩脉+化探异常+遥感异常186 5000.340.8
23DZX22伟晶岩脉+化探异常21 4130.340.8
24DZX23伟晶岩脉+化探异常1 675 2760.340.8
25DZX24伟晶岩脉+化探异常182 2320.340.8
26DZX25伟晶岩脉38 2300.340.8
27DZX26伟晶岩脉+遥感异常126 3400.340.8
28DZX27解译伟晶岩脉+遥感异常394 2760.340.37
29DZX28遥感异常506 8990.340.12
30DZX29解译伟晶岩脉+遥感异常990 8200.340.37
31DZX30解译伟晶岩脉+遥感异常313 4330.340.37
32DZX31伟晶岩脉+遥感异常820 6340.340.61
33DZX32遥感异常145 3570.340.12
34DZX33解译伟晶岩脉+遥感异常257 8880.340.37
35DZX34遥感异常1 089 1710.340.12

表6

大红柳滩一带最小预测区按精度估算的锂铍预测资源量统计"

序号预测区编号按精度估算的资源量/t预测总资源量/t
334-1334-2334-3
Li2OBeOLi2OBeOLi2OBeOLi2OBeO
合计5 348 548159 183601 31117 8783 186 25894 7339 136 117271 794
1DZX013 66740913 667409
2DZX156 5701 84356 5701 843
3DZX228 00183228 001832
4DZX310 48031210 480312
5DZX48 4332518 433251
6DZX5224 0976 663224 0976 663
7DZX664 8341 92864 8341928
8DZX71 693 95950 3641 693 95950 364
9DZX81 051 82631 2721 051 82631 272
10DZX939 9221 18739 9221 187
11DZX102 532 52675 2952 532 52675 295
12DZX1177 4032 30177 4032 301
13DZX12148 1414 404148 1414 404
14DZX13142 9664 251142 9664 251
15DZX14170 6595 074170 6595 074
16DZX1520 70861620 708616
17DZX1623 59970223 599702
18DZX17285 1118 477285 1118 477
19DZX189 7452909 745290
20DZX1945 2531 34545 2531 345
21DZX2012 74837912 748379
22DZX2162 5191 85962 5191 859
23DZX227 1782137 178213
24DZX231 056 75631 4191 056 75631 419
25DZX24114 9513 418114 9513 418
26DZX2524 11671724 116717
27DZX2679 6952 36979 6952 369
28DZX27115 0273 420115 0273 420
29DZX2847 9621 42647 9621 426
30DZX29289 0658 594289 0658 594
31DZX3091 4422 71991 4422 719
32DZX31394 71011 735394 71011 735
33DZX3213 75440913 754409
34DZX3375 2372 23775 2372 237
35DZX3410 30573 064103 0573 064

表7

大红柳滩一带最小预测区按深度估算的锂铍预测资源量"

矿床类型350 m以浅预测资源量/t预测总资源量/t
334-1334-2334-3
Li2OBeOLi2OBeOLi2OBeOLi2OBeO
花岗伟晶岩型5 348 548159 183601 31117 8783 186 25894 7339 136 117271 794

表8

大红柳滩一带最小预测区锂铍预测资源量类别统计"

类别序号预测区编号资源量级别预测区总资源量/t
Li2OBeO
A1DZX0334-113 667409
2DZX1334-156 5701 843
3DZX7334-11 693 95950 364
4DZX8334-11 051 82631 272
5DZX10334-12 532 52675 295
合计5 438 548159 183
B1DZX2334-228 001832
2DZX3334-210 480312
3DZX4334-28 433251
4DZX5334-2224 0976 663
5DZX6334-264 8341 928
6DZX9334-239 9221 187
7DZX11334-277 4032 301
8DZX12334-2148 1414 404
合计601 31117 878
C1DZX13334-3142 9664 251
2DZX14334-3170 6595 074
3DZX15334-320 708616
4DZX16334-323 599702
5DZX17334-3285 1118 477
6DZX18334-39 745290
7DZX19334-345 2531 345
8DZX20334-312 748379
9DZX21334-362 5191 859
10DZX22334-37 178213
11DZX23334-31 056 75631 419
12DZX24334-3114 9513 418
13DZX25334-324 116717
14DZX26334-379 6952 369
15DZX27334-3115 0273 420
16DZX28334-347 9621 426
17DZX29334-3289 0658 594
18DZX30334-391 4422 719
19DZX31334-3394 71011 735
20DZX32334-313 754409
21DZX33334-375 2372 237
22DZX34334-3103 0573 064
合计3 186 25894 733
预测总资源量9 136 117271 794

表9

大红柳滩一带最小预测区可信度统计"

最小预测区编号面积可信度延深可信度含矿系数可信度资源量综合可信度
可信度依据可信度依据
DZX00.75a+b+c+e0.9矿床勘探深度统计0.50.72
DZX10.75a+b+c+e0.9矿床勘探深度统计0.50.72
DZX20.75a+b+c0.5含矿建造—构造的产状确定0.50.58
DZX30.75a+b+c0.5含矿建造—构造的产状确定0.50.58
DZX40.75a+b+c0.5含矿建造—构造的产状确定0.50.58
DZX50.75a+b+c+e0.5含矿建造—构造的产状确定0.50.58
DZX60.75a+b+c+e0.5含矿建造—构造的产状确定0.50.58
DZX70.75a+b+c+e0.9矿床勘探深度统计0.50.72
DZX80.75a+b+c+e0.75含矿建造—构造的产状确定0.50.67
DZX90.75a+b+c0.5含矿建造—构造的产状确定0.50.58
DZX100.75a+b+c+e0.9矿床勘探深度统计0.50.72
DZX110.75a+b+c0.5含矿建造—构造的产状确定0.50.58
DZX120.75a+b+c+e0.5含矿建造—构造的产状确定0.50.58
DZX130.5b+c0.25专家分析确定0.50.42
DZX140.5b+c+e0.25专家分析确定0.50.42
DZX150.5b+c+e0.25专家分析确定0.50.42
DZX160.5b+c0.25专家分析确定0.50.42
DZX170.5b+c+e0.25专家分析确定0.50.42
DZX180.5b+c0.25专家分析确定0.50.42
DZX190.25b+c0.25专家分析确定0.50.33
DZX200.25b+c0.25专家分析确定0.50.33
DZX210.25b+c+e0.25专家分析确定0.50.33
DZX220.25b+c0.25专家分析确定0.50.33
DZX230.25b+c0.25专家分析确定0.50.33
DZX240.25b+c0.25专家分析确定0.50.33
DZX250.25b0.25专家分析确定0.50.33
DZX260.25b+e0.25专家分析确定0.50.33
DZX270.15d+e0.25专家分析确定0.50.3
DZX280.1e0.25专家分析确定0.50.28
DZX290.15d+e0.25专家分析确定0.50.3
DZX300.15d+e0.25专家分析确定0.50.3
DZX310.25b+e0.25专家分析确定0.50.33
DZX320.1e0.25专家分析确定0.50.28
DZX330.15d+e0.25专家分析确定0.50.3
DZX340.1e0.25专家分析确定0.50.28

表10

大红柳滩一带最小预测区锂铍预测资源量的可信度统计"

可信度范围预测资源量/t
Li2OBeO
0.25~0.504 379 859130 210
0.50~0.755 949 859177 025
≥0.7500
1 王登红,王成辉,孙艳,等.我国锂铍钽矿床调查研究进展及相关问题简述[J].中国地质调查,2017,4(5):1-8.
Wang Denghong,Wang Chenghui,Sun Yan,et al.New progresses and discussion on the survey and research ofLi,Be,Ta ore deposits in China[J].Geological Survey of China,2017,4(5):1-8.
2 许志琴,王汝成,赵中宝,等.试论中国大陆“硬岩型”大型锂矿带的构造背景[J].地质学报,2018,92(6):1091-1106.
Xu Zhiqin,Wang Rucheng,Zhao Zhongbao,et al.On the structural backgrounds of the large-scale“hard-rock type” lithium ore belts in China[J].Acta Geologica Sinica,2018,92(6):1091-1106.
3 刘丽君,王登红,刘喜方,等.国内外锂矿主要类型、分布特点及勘查开发现状[J].中国地质,2017,44(2):263-278.
Liu Lijun,Wang Denghong,Liu Xifang,et al.The main types,distribution features and present situation of exploration and development for domestic and foreign lithiummine[J].Geology in China,2017,44(2):263-278.
4 刘丽君,付小方,王登红,等.甲基卡式稀有金属矿床的地质特征与成矿规律[J].矿床地质,2015,34(6):1187-1198.
Liu Lijun,Fu Xiaofang,Wang Denghong,et al.Geological characteristics and metallogeny of Jiajika-Style rare metal deposts[J].Mineral Deposits,2015,34(6):1187-1198.
5 王登红,孙艳,刘喜方,等.锂能源金属矿产深部探测技术方法与找矿方向[J].中国地质调查,2018,5(1):1-9.
Wang Denghong,Sun Yan,Liu Xifang,et al.Deep exploration technology and prospecting direction for lithium energy metal[J].Geological Survey of China,2018,5(1):1-9.
6 王核,刘建平,李社宏,等.西昆仑喀依孜斑岩钼矿的发现及意义[J].大地构造与成矿学,2008,32(2):179-184.
Wang He,Liu Jianping,Li Shehong,et al.Discovery of the Kayizi porphyry molybdenum deposit in the western Kunlun,Xinjiang and its prospecting implication[J].Geotectonica et Metallogenia,2008,32(2):179-184.
7 王核,任广利,刘建平,等.西昆仑喀拉果如木铜矿床地质特征及发现意义[J].新疆地质,2010,28(4):365-369.
Wang He,Ren Guangli,Liu Jianping,et al.Discovery and characteristic of the Kalaguorumu copper deposit in west Kunlun,Xinjiang[J].Xinjiang Geology,2010,28(4):365-369.
8 王核,吴玉峰,刘建平,等.西昆仑恰尔隆—大同一带斑岩铜钼矿找矿前景分析[J].矿物学报,2011,31(增1):845-846.
Wang He,Wu Yufeng,Liu Jianping,et al.Prospecting potential of porphy copper molybdenum deposit in the Qia’erlong-Datong area,western Kunlun[J].Acta Mineralogica Sinica,2011,31(Supp.1):845-846.
9 王核,李沛,马华东,等.新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J].大地构造与成矿学,2017,41(6):1053-1062.
Wang He,Li Pei,Ma Huadong,et al.Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum,Hetian,Xinjiang,and its prospecting implication[J].Geotectonica et Metallogenia,2017,41(6):1053-1062.
10 李荣社,计文化,赵振明,等.昆仑早古生代造山带研究进展[J].地质通报,2007,26(4):373-382.
Li Rongshe,Ji Wenhua,Zhao Zhenming,et al.Progress in the study of the Early Paleozoic Kunlun orogenic belt[J].Geological Bulletin of China,2007,26(4):373-382.
11 李荣社,徐学义,计文化.对中国西部造山带地质研究若干问题的思考[J].地质通报,2008,27(12):2020-2025.
Li Rongshe,Xu Xueyi,Ji Wenhua.Some problems of geological study in the western China orogenic belt[J].Geological Bulletin of China,2008,27(12):2020-2025.
12 计文化,周辉,李荣社,等.西昆仑新藏公路北段古—中生代多期次构造—热事件年龄确定[J].地球科学,2007,32(5):671-680.
Ji Wenhua,Zhou Hui,Li Rongshe,et al.The deformation age of Palaeozoic-Mesozoic Tectonic along north Xin-Zang Road in west Kunlun[J].Earth Science—Journal of China University of Geosciences,2007,32(5):671-680.
13 肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑),2000,30(增1):22-28.
Xiao Wenjiao,Hou Quanlin,Li Jiliang,et al.The anatomy on the tectonic facies and the accretional process of the multi-islands in western Kunlun[J].Science in China(Series D),2000,30(Supp.1):22-28.
14 董连慧,冯京,刘德权,等.新疆成矿单元划分方案研究[J].新疆地质,2010,28(1):1-15.
Dong Lianhui,Feng Jing,Liu Dequan,et al.Research for classification of metallogenic unit of Xinjiang[J].Xinjiang Geology,2010,28(1):1-15.
15 潘裕生,王毅,Matte P H,等.青藏高原叶城—狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295-307.
Pan Yusheng,Wang Yi,Matte P H,et al.Tectonic evolution along the geotraverse from Yecheng to Shiquanhe[J].Acta Geologica Sinica,1994,68(4):295-307.
16 冯昌荣,何立东,郝延海,等.新疆塔什库尔干县一带铁多金属矿床成矿地质特征及找矿潜力分析[J].大地构造与成矿学,2012,36(1):102-110.
Feng Changrong,He Lidong,Hao Yanhai,et al.Features and potential analysis of the iron polymentallic deposits in the Taxkorgan area,Xinjiang[J].Geotectonica et Metallogenia,2012,36(1):102-110.
17 陈登辉,伍跃中,李文明,等.西昆仑塔什库尔干地区磁铁矿矿床特征及其成因[J].大地构造与成矿学,2013,37(4):671-684.
Chen Denghui,Wu Yuezhong,Li Wenming,et al.Geological characteristics and genesis of the iron deposits in the Taxkorgan area,west Kunlun[J].Geotectonica et Metallogenia,2013,37(4):671-684.
18 魏小鹏,王核,胡军,等.西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J].地球化学,2017,46(1):66-80.
Wei Xiaopeng,Wang He,Hu Jun,et al.Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen:Geotectonic implications[J].Geochimca,2017,46(1):66-80.
19 吴玉峰,王核,黄朝阳,等.新疆喀喇昆仑喀拉果如木铜矿成矿岩体地球化学和锆石年代学[J].岩石学报,2013,29(1):205-216.
Wu Yufeng,Wang He,Huang Chaoyang,et al. Geochemistry and geochronology of the Kalaguorumu porphyry Cu-mineralized intrusions,Karakorum Mountains,Xinjiang[J].Acta Petrologica Sinica,2013,29(1):205-216.
20 董连慧,徐兴旺,范廷宾,等.喀喇昆仑火烧云超大型喷流—沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J].新疆地质,2015,33(1):41-50.
Dong Lianhui,Xu Xingwang,Fan Tingbin,et al.Discovery of the Huoshaoyun super-large exhalative-sedimentary carbonate lead-zinc deposit in the western Kunlun area and its great significance for regional metallogeny[J].Xinjiang Geology,2015,33(1):41-50.
21 燕洲泉,王怀涛,李元茂,等.西昆仑大红柳滩一带伟晶岩型锂铍矿产资源潜力评价[J].甘肃地质,2018,27(3/4):42-48.
Yan Zhouquan,Wang Huaitao,Li Yuanmao,et al.The potential evaluation of pegmatite-type lithium-beryllium mineral resources in Dahongliutan,west Kunlun[J].Gansu Geology,2018,27(3/4):42-48.
22 新疆东力矿业投资有限公司.新疆和田县阿克塔斯稀有金属矿勘探报告[R].和田:新疆东力矿业投资有限公司,2015.
Xinjiang Dongli Mining Investment Co.,Ltd.Exploration report of Aktas rare metal deposits in Hotan County[R].Hotan:Xinjiang Dongli Mining Investment Co.,Ltd.,2015.
23 中国冶金地质总局新疆地质勘查院.新疆和田地区康西瓦—大红柳滩地区矿产地质调查报告[J].乌鲁木齐:中国冶金地质总局新疆地质勘查院,2015.
Xinjiang Geological Exploration Institute of China Metallurgical Geology Bureau.Mineral geological survey report in Kangxiwa-Dahongliutan Hotan County[J].Urumqi:Xinjiang Geological Exploration Institute of China Metallurgical Geology Bureau,2015.
24 肖克炎,程松林,娄德波,等.区域矿产定量评价的矿床综合信息评价模型[J].地质通报,2010,29(10):1430-1444.
Xiao Keyan,Cheng Songlin,Lou Debo,et al.Integrated information evaluation model for regional mineral resources quantitative assessment[J].Geological Bulletin of China,2010,29(10):1430-1444.
25 叶天竺,肖克炎,严光生.矿床模型综合地质信息预测技术研究[J].地学前缘,2007,14(5):11-19.
Ye Tianzhu,Xiao Keyan,Yan Guangsheng.Methodology of deposit modeling and mineral resource potential assessment using integrated geological information[J].Earth Science Frontiers,2007,14(5):11-19.
26 肖克炎,张晓华,李景朝,等.全国重要矿产总量预测方法[J].地学前缘,2007,14(5):20-26.
Xiao Keyan,Zhang Xiaohua,Li Jingchao,et al.Quantitative assessment method for national important mineral resources prognosis[J].Earth Science Frontiers,2007,14(5):20-26.
27 刘芳,艾宁.含矿地质体体积法在宁夏六盘山地区铅锌矿资源潜力评价中的应用[J].宁夏工程技术,2016,15(4):300-303.
Liu Fang,Ai Ning.Metallogenic geologic body volume method applied in lead-zinc resource appraisal of Liupanshan region,Ningxia[J].Ningxia Engineering Technology,2016,15(4):300-303.
28 黄传冠,刘春根,丁少辉,等.含矿地质体体积法在江西德兴地区铜矿资源潜力评价中的应用[J].吉林大学学报(地球科学板),2013,43(4):1143-1150.
Huang Chuanguan,Liu Chungen,Ding Shaohui,et al.Metallgenic geologic body volume method applied in copper resource appraisal of Dexing area,Jiangxi Province,China[J].Journal of Jilin University(Earth Science Edition),2013,43(4):1143-1150.
[1] 韩先菊,卿敏,牛翠祎,唐明国. 青海北巴彦喀拉成矿带基于GIS金矿资源综合信息预测评价[J]. 黄金科学技术, 2015, 23(6): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!