黄金科学技术 ›› 2014, Vol. 22 ›› Issue (2): 77-82.doi: 10.3969/j.issn.1005-2518.2014.02.077
李超1,2,张祉倩1,李宏煦1,2
LI Chao1,2,ZHANG Zhiqian1,LI Hongxu1,2
摘要:
电位-pH图是一种重要的热力学分析方法,能够直观地反映出浸出体系中的各种热力学平衡,有助于推断出物质发生化学反应的趋势,在难处理金精矿生物浸出体系中有重要指导作用。通过热力学计算,针对生物浸出环境绘制并分析了313 K温度下,pH=0~7.0,E=-1.2~1.2 V范围内适宜生物氧化黄铁矿—水系、毒砂—水系的电位-pH图。结果表明:在酸性体系下黄铁矿的稳定区域存在于0.336 V以下,毒砂则为0.133 V以下,毒砂的稳定性比黄铁矿的稳定性低,在较低的电位条件下便会被氧化溶解。
中图分类号:
[1] Angus J C,Lu B,Zappia M J.Potential-pH diagrams for complex systems[J].Journal of Applied Electrochemistry,1987, 17(1):1-21.[2] 尹卓湘, 周红娟, 马婕.电位-pH图在湿法冶金中的应用[J].贵州工业大学学报(自然科学版),2008,37(5):24-27,40.[3] 凌敏,胡治流.矿石中金的溴氧化浸出的热力学分析[J].黄金科学技术,2003,11(1):38-41.[4] 丁明刚, 曾英, 孙世林.电位-pH图及其研究进展[J].世界科技研究与发展,2005,27(3): 20-23.[5] Kinniburgh D G,Cooper D M.Predominance and mineral stability diagrams revisited[J].Environmental Science & Technology,2004,38(13):3641-3648.[6] 谢学军, 王浩, 邹品果, 等.铁—水体系电位-pH图与氧化性水工况的腐蚀控制[J].华北电力技术,2011,(5):23-25.[7] Linkson P B,Phillips B D,Rowles,C D.The method of max-imum constriction-An improved algorithm for the computer generation of potential-pH diagrams[J].Corrosion Science,1979,19(9):613-620.[8] 兰新哲,张箭.硫脲提金法回顾[J].黄金科学技术,1996,4(1):29-35.[9] 高金昌.生物冶金技术在黄金工业生产中的应用现状及发展趋势[J].黄金, 2008,29(10):36-40.[10] 王治科, 叶存玲, 范顺利,等. 浸金体系的Eh-pH图及其热力学分析[J].有色金属(冶炼部分), 2008,(3):37-40.[11] 杨松荣.含砷难处理金矿石生物氧化提金基础与工程化研究[D].长沙:中南大学,2004.[12] 钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.[13] 郭汉杰.冶金物理化学教程[M].北京:冶金工业出版社, 2006.[14] Fishtik I.Thermodynamic stability relations in redox systems[J].Environmental Science & Technology,2006,40(6):1902-1910.[15] 金创石, 张廷安, 牟望重, 等.难处理金矿浸出预处理过程的FeS2-FeAsS-H2O系电位-pH图[J].材料与冶金学报,2011,10(2):120-124.[16] 闵小波.含砷难处理金矿细菌浸出基础理论及工艺研究[D].长沙:中南大学,2000.[17] Dean J A.兰氏化学手册[M].北京:科学出版社,2003. |
[1] | 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化—提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253. |
[2] | 陈亚静,杨洪英*,佟琳琳,金哲男. 含砷矿石细菌氧化液除砷实验及砷钙渣稳定性研究[J]. 黄金科学技术, 2018, 26(1): 124-129. |
[3] | 黄爱华. 提金含氰废水处理工艺研究现状及发展趋势分析[J]. 黄金科学技术, 2014, 22(2): 83-89. |
[4] | 胡杰华,黄丽. 难浸金矿生物堆浸工艺若干控制要点浅析[J]. 黄金科学技术, 2013, 21(1): 78-81. |
|