img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 266-274.doi: 10.11872/j.issn.1005-2518.2021.02.172

• 采选技术与矿山管理 • 上一篇    

基于静态沉降试验的全尾砂浓密技术参数预测

刘奇1,2,3(),岑佑华1,刘东锐2,3,罗卫兵1,徐喜1   

  1. 1.大冶有色金属集团控股有限公司,湖北 黄石 435000
    2.长沙矿山研究院有限责任公司,湖南 长沙 410083
    3.国家金属采矿工程技术研究中心,湖南 长沙 410012
  • 收稿日期:2020-09-24 修回日期:2020-12-30 出版日期:2021-04-30 发布日期:2021-05-28
  • 作者简介:刘奇(1987-),男,江西赣州人,博士研究生,从事采矿与充填技术研究工作。345926583@qq.com
  • 基金资助:
    “十二五”国家科技支撑计划项目“多空区厚大矿体安全高效开采及工程化技术研究”(2015BAB14B01)

Prediction of Technical Parameters of Full Tailings Thickening Based on Static Settlement Test

Qi LIU1,2,3(),Youhua CEN1,Dongrui LIU2,3,Weibing LUO1,Xi XU1   

  1. 1.Daye Nonferrous Metals Co. ,Ltd. ,Huangshi 435000,Hubei,China
    2.Changsha Institute of Mining Research Co. ,Ltd. ,Changsha 410083,Hunan,China
    3.National Metal Mining Engineering Technology Research Center,Changsha 410012,Hunan,China
  • Received:2020-09-24 Revised:2020-12-30 Online:2021-04-30 Published:2021-05-28

摘要:

为了研究全尾砂浆浓密技术参数与尾砂物理性质之间的定量关系,对9个金属矿山的全尾砂进行了静态沉降试验。首先测定了这9个金属矿山全尾砂的粒径组成和密度大小,然后对这9个金属矿山的全尾砂分别进行了絮凝沉降试验。试验结果表明:料浆的底流浓度和沉降试验所需絮凝剂用量仅与尾砂的粒径有关,而与尾砂的密度无关,尾砂粒径越粗,底流浓度越高,试验所需絮凝剂用量就越少;单位面积尾砂通过量与尾砂粒径和密度均有关系,尾砂粒径和密度越大,固体通量越大;进一步回归分析得到了全尾砂粒径组成和密度大小与底流浓度、固体通量的关系方程。将计算结果与试验结果进行对比分析,发现预测值与试验值相差很小,证明本研究推导的关系方程方便可行,具有很好的推广应用价值。

关键词: 浓密参数, 絮凝沉降, 底流浓度, 固体通量, 回归分析, 尾砂粒径

Abstract:

At present,most of the researches on the thickening performance of tailings are macro researches,and the focus of the research is to improve the settlement performance parameters of mortar by using certain agents,technical means or methods. However,there is no micro research and no in-depth study on what causes the great difference in the thickening properties between different tailings. At present,there is no systematic study on the influence of density and particle size on solid flux and underflow concentration. This paper tries to analyze the main factors affecting the flocculation thickening effect by doing a large number of static sedimentation tests,and to study the quantitative relationship between the technical parameters of full tailing mortar thickening and the physical properties of tailings. Therefore,the particle size composition and density of the tailings of nine metal mines were measured first,and then the flocculation sedimentation tests of the whole tailings of these nine metal mines were carried out. The optimal pulp dilution concentration,underflow concentration,flocculant type,flocculant dosage and tailings throughput per unit area of the 9 typical mines were obtained. The results show that the underflow concentration of slurry,the change of slurry concentration and the amount of flocculant required for sedimentation test are only related to the particle size of tailings,and have nothing to do with the density of tailings. The coarser the particle size is,the higher the underflow concentration is,and the less flocculant dosage is required for the test. The larger the particle size and density of tailings are,the higher the solid flux is. Furthermore,the mathematical relationship between the factors was fitted by the dimensionless regression analysis method,and the relationship equation between the median particle size of tailings and underflow concentration was obtained,the relationship equation between the control particle size of tailings and the concentration change was obtained,and the relationship equation between the particle size,density,concentration and solid flux was obtained. Comparing the calculation results with the test results,it is found that the difference between the predicted value and the test value is very small,which proves that the derived relationship equation is convenient and feasible,and has a good application value.

Key words: densely parameters, flocculation and settling, underflow concentration, solid flux, regression analysis, particle size of tailings

中图分类号: 

  • TD853

表1

各矿山絮凝沉降试验结果汇总"

矿山编号

密度γ

/(g·cm-3

粒径/mm

最佳矿浆稀释

浓度C0/%

底流浓度C1/%

最佳絮凝剂

类型

絮凝剂单耗

/(g·t-1

固体通量

qt/(t·m-2·h-1

中值粒径d50控制粒径d60
矿山12.0100.02820.039117.553.1AG902020.0002.75
矿山22.6110.03350.042314.053.58337620.0004.30
矿山32.3220.02170.030210.142.78337630.0003.65
矿山42.8710.04920.062516.559.58337610.0005.95
矿山52.8800.04430.054013.255.36013S15.0005.47
矿山62.5600.05480.072314.059.3AG902010.0004.76
矿山72.6890.10880.140716.768.07610.0006.68
矿山82.4510.10120.128814.064.7AG602510.0005.30
矿山93.0090.08470.105516.763.8833767.5007.27

图1

不同料浆浓度的沉降曲线"

表2

不同絮凝剂添加量下矿山3中料浆沉降情况"

料浆

浓度

/%

沉降

时间

絮凝剂添加量为20 g/t絮凝剂添加量为30 g/t絮凝剂添加量为40 g/t

体积

/mL

沉降高度/cm

密度

/(g·cm-3

浓度

/%

体积

/mL

沉降高度/cm

密度

/(g·cm-3

浓度

/%

体积

/mL

沉降高度/cm

密度

/(g·cm-3

浓度

/%

15.60 s1 00001.10015.61 00001.10015.61 00001.10015.6
20 s7606.911.13120.060011.521.16624.57008.641.14221.5
40 s56012.671.17826.048014.981.20829.654013.251.18526.8
60 s49014.691.20329.143016.421.23232.447015.261.21230.1
2 min40017.281.24934.338017.861.26235.840017.281.24934.3
4 min34019.011.29339.033019.31.30239.934019.011.29339.0
6 min31419.761.31841.531019.871.32241.931019.871.32241.9
8 min29720.251.33643.330020.161.33242.929620.281.33743.4
10 min28820.511.34644.329420.331.33943.629120.421.34343.9
12.70 s100001.0812.71 00001.0812.71 00001.0812.7
20 s6709.51.11918.350014.41.15923.751014.111.15623.3
40 s45015.841.17725.937018.141.21530.539017.571.20429.2
60 s38217.81.20929.733019.31.24233.535018.721.22831.9
2 min30020.161.26636.127920.761.28638.229820.221.26736.3
4 min26021.311.30740.424821.661.32141.826021.311.30740.4
6 min23821.951.33543.223821.951.33543.224021.891.33242.9
8 min23222.121.34444.023322.091.34243.923821.951.33543.2
10 min23122.151.34544.123122.151.34544.123721.971.33643.3
9.70 s1 00001.069.71 00001.069.71 00001.069.7
20 s55012.961.10916.932019.581.18727.136018.431.16624.5
40 s34019.011.17625.728020.741.21330.331019.871.19327.8
60 s29020.451.20629.425821.371.23232.427021.021.22131.2
2 min23022.181.2635.522522.321.26636.122322.381.26836.4
4 min19923.071.339.720023.041.29939.619923.071.339.7
6 min18523.471.32342.019023.331.31441.218523.471.32342.0
8 min17923.641.33443.118223.561.32842.517923.641.33443.1
10 min17423.791.34344.018223.591.3342.517423.791.34344.0
6.70 s1 00001.0416.71 00001.0416.71 00001.0416.7
20 s30020.161.13520.526021.311.15623.228020.741.14521.8
40 s21022.751.19327.820023.041.20329.020023.041.20329.0
60 s19023.331.21330.218023.621.22531.617023.91.23833.1
2 min17023.91.23833.116024.191.25334.816024.191.25334.8
4 min15024.481.2736.614724.571.27637.214524.621.27937.6
6 min14024.771.28938.614124.741.28738.414024.771.28938.6
8 min13924.81.29238.814024.771.28938.613924.81.29238.8
10 min13824.831.29439.113924.81.29238.813824.831.29439.1

图2

固体通量与矿浆浓度之间的关系曲线"

图3

尾砂粒径与底流浓度的非线性关系"

图4

尾砂粒径与浓度改变量的非线性关系"

图5

尾砂中值粒径、密度与固体通量的关系"

图6

尾砂密度、粒径、浓度改变量与固体通量的线性关系"

表3

9个矿山的计算结果与试验结果对比"

矿山编号真密度 /(g·cm-3中值粒径d50控制粒径d60底流浓度/%单位面积尾砂通过量/(t·m-2·h-1
试验值计算值相对误差试验值计算值相对误差
矿山11.0100.02820.039153.150.355.182.752.740.54%
矿山21.6110.03350.042353.553.810.584.304.300.05%
矿山31.3220.02170.030242.744.063.183.653.630.62%
矿山41.8710.04920.062559.558.581.555.955.615.67%
矿山51.8800.04430.054055.357.704.355.475.312.85%
矿山61.5600.05480.072359.359.220.134.764.964.30%
矿山71.6890.10880.140768.067.261.106.686.640.63%
矿山81.4510.10120.128864.766.222.345.305.524.21%
矿山92.0090.08470.105563.862.791.597.277.340.91%
Arjmand R,Massinaei M,Behnamfard A,2019.Improving flocculation and dewatering performance of iron tailings thickeners[J].Journal of Water Process Engineering,31:1-8.
Chen Zhongxi,Zhao Kui,Xu Yangdong,al et,2015.Experimental study on high solubility total tailings flocculation settlement properties in a mine[J].Nonferrous Metals Science and Engineering,6(3):88-93.
Dong Peixin,2017.Research on Cementitious Materials and Rheological Properties of the Whole Tailings in Angang Iron[D].Beijing:University of Science and Technology Beijing.
Du Jiafa,Hou Chen,Zhu Zhaowen,al et,2020.Flocculating sedimentation test of unclassified tailings and its engineering application[J].Metal Mine,(1):95-100.
Gao Weihong,Wang Hongjiang,Chen Hui,al et,2016.Study on main factors of underflow concentration in the dynamics thickening process of tailings[J].Metal Mine,(11):102-105.
Gong X M,Zhang J Y,Guo L W,2011.Theory and technology of backfilling in deep mines[C]//IEEE 2011 2nd International Conference on Mechanic Automation and Control Engineering(MACE).New York:IEEE:719-721.
Grangeia C,Ávila P,Matias M,al et,2011.Mine tailings integrated investigations:The case of Rio tailings (Panasqueira Mine,Central Portugal)[J].Engineering Geology,123(4):359-372.
Guo Dasheng,2013.Study of full tailings filling technology and continuous cementing material technology[J].Value Engineering,183(36):89-90.
Li Gongcheng,2018.Study on Size Change of Unclassified Tailings Floes and Its Thickening Performance[D].Beijing:University of Science and Technology Beijing.
Li Mai,2015.On the application and related issues of filling mining technology in mining[J].Energy and Energy Conservation,116(5):158-159.
Niu Peng,Wang Hongjiang,Wu Aixiang,al et,2016.Static flocculation sedimentation law of superfine full tailings and its application in vertical sand bin design[J].Industrial Minerals & Processing,(3):35-39,46.
Wang S,Song X P,Wang X J,al et,2020.Influence of coarse tailings on flocculation settlement[J].International Journal of Minerals Metallurgy and Materials,27(8):1065-1074.
Wang X M,Zhao B,Zhang Q L,al et,2008.Cemented backfilling technology with unclassified tailings based on vertical sand silo[J].Journal of Central South University of Technology (English Edition),15(6):801-807.
Wang Xinmin,Ke Yuxian,Zhang Qinli,al et,2017.Rule and optimum magnetization parameters of sedimentation of pre-magnetized crude tailings slurry[J].Journal of China University of Mining &Technology,46(4):803-808.
Wang Xinmin,Zhao Jianwen,Zhang Deming,2015.Optimal prediction model of flocculating sedimentation velocity of unclassified tailings[J].The Chinese Journal of Nonferro-us Metals,25(3):793-798.
Yang Ning,Yin Xiangang,Xiao Muen,al et,2017.Study on optimization of flocculation and sedimentation parameters of tailings[J]. Mining Research and Development,37(7):24-28.
Yao Weixin,2011.Theoretical Research and Application of High Concentration Coarse Aggregate Filling in Mine[D].Kunming:Kunming University of Science and Technology.
Yu Runcang,2010.Development and innovation of cemented filling technology in China[J].China Mine Engineering,39(5):1-4.
Zhu Liyi,Wensheng Lü,Yang Peng,al et,2019.Influence of acoustic wave on thickening sedimentation of unclassified tailings[J].The Chinese Journal of Nonferrous Metals,29(12):2850-2859.
陈忠熙,赵奎,许杨东,等,2015.某矿高浓度全尾砂料浆絮凝沉降特性试验研究[J].有色金属科学与工程,6(3):88-93.
董培鑫,2017.鞍钢大型铁矿全尾砂胶凝材料与高浓度料浆流变特性研究[D].北京:北京科技大学.
杜加法,侯晨,朱兆文,等,2020.全尾砂絮凝沉降试验及其工程应用[J].金属矿山,(1):95-100.
高维鸿,王洪江,陈辉,等,2016.尾矿动态浓密过程中底流浓度主要影响因素研究[J].金属矿山,(11):102-105.
郭大胜,2013.全尾砂连续充填工艺及胶结材料技术的研究[J].价值工程,183(36):89-90.
李公成,2018.全尾砂絮团尺寸变化及其浓密性能研究[D].北京:北京科技大学.
李劢,2015.充填采矿技术在采矿中的应用与相关问题探讨[J].能源与节能,116(5):158-159.
牛鹏,王洪江,吴爱祥,等,2016.超细全尾砂静态絮凝沉降规律及其在立式砂仓设计中的应用[J].化工矿物与加工,(3):35-39,46.
王新民,柯愈贤,张钦礼,等,2017.磁化处理全尾砂料浆沉降规律及其参数优化[J].中国矿业大学学报,46(4):803-808.
王新民,赵建文,张德明,2015.全尾砂絮凝沉降速度优化预测模型[J].中国有色金属学报,25(3):793-798.
杨宁,尹贤刚,肖木恩,等,2017.全尾砂絮凝沉降参数优化研究[J].矿业研究与开发,37(7):24-28.
姚维信,2011.矿山粗骨料高浓度充填理论研究与应用[D].昆明:昆明理工大学.
于润沧,2010.我国胶结充填工艺发展的技术创新[J].中国矿山工程,39(5):1-4.
诸利一,吕文生,杨鹏,等,2019.声波对全尾砂浓密沉降的影响[J].中国有色金属学报,29(12):2850-2859.
[1] 江科,康瑞海,姚中亮,彭亮. 全尾砂最佳絮凝沉降浓度及调控方式研究[J]. 黄金科学技术, 2019, 27(3): 440-448.
[2] 李宗楠,郭利杰,魏晓明,陈鑫政. 尾砂浆干扰絮凝沉降机理研究[J]. 黄金科学技术, 2019, 27(2): 265-270.
[3] 陈鑫政,郭利杰,李文臣,李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
[4] 刘娅,丁剑,付国燕,钱鹏,叶树峰. 微细氰化尾矿颗粒絮凝沉降实验研究[J]. 黄金科学技术, 2015, 23(4): 91-96.
[5] 刘娅,吕翠翠,丁剑,钱鹏,李青春,叶树峰,陈运法. 氰化尾矿的絮凝实验研究[J]. 黄金科学技术, 2013, 21(6): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!