img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (1): 124-133.doi: 10.11872/j.issn.1005-2518.2020.01.133

• 采选技术与矿山管理 • 上一篇    下一篇

基于V-REP的井下铲运机自主作业仿真试验软件平台研究

吴家希1,2(),王李管1,2(),李亚龙1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学数字矿山研究中心,湖南 长沙 410083
  • 收稿日期:2019-07-16 修回日期:2019-09-27 出版日期:2020-02-29 发布日期:2020-02-26
  • 通讯作者: 王李管 E-mail:835966891@qq.com;liguan_wang@163.com
  • 作者简介:吴家希(1995- ),男,贵州贵阳人,硕士研究生,从事矿山设备智能化研究工作。835966891@qq.com
  • 基金资助:
    国家重点研发计划项目“深部集约化开采生产过程智能管控技术”(2017YFC0602905)

Research on Simulation Software Platform for Underground LHD Operation

Jiaxi WU1,2(),Liguan WANG1,2(),Yalong LI1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China
  • Received:2019-07-16 Revised:2019-09-27 Online:2020-02-29 Published:2020-02-26
  • Contact: Liguan WANG E-mail:835966891@qq.com;liguan_wang@163.com

摘要:

虽然增强学习方法能够为井下铲运机自主铲装作业提供解决方案,但直接将其应用在真实环境中进行数据采集存在诸多问题。为满足自主铲装作业训练对数据的需求,借鉴某型号正转四杆结构的井下铲运机,在V-REP中建立铲运机、矿石爆堆及其工作环境的动力学模型,并通过编写控制脚本实现外接设备操纵铲运机作业,仿真和模拟矿石爆堆的生成,从而构建了仿真试验平台。结果证明在虚拟环境下可以实现对井下铲运机在溜井处铲装矿石,并经由运输巷道运输至溜井处卸载矿石这一完整作业流程的仿真。虚拟环境中模型的运动状态良好、模型间交互正常,可作为后续增强学习框架下自主铲装作业的训练环境,也可作为井下作业人员上岗前的培训平台。

关键词: V-REP, 井下铲运机, 仿真平台, 动力学建模, 实时控制, 运动仿真

Abstract:

In order to avoid many unfavorable factors in the traditional environment of mining operations,improve production efficiency of mines,reduce the labor cost and eliminate the accident potentials,the large mining equipment such as underground LHD(load-haul-and-dump-machine) is developing towards the direction of intelligence,information and unmanned.The autonomous scooping operation of LHD is an important part of relative researches,but the scooping operation is difficult to predict due to the complex structure of the working device of LHD.With the rapid development of methods such as reinforcement learning in recent years,there are some feasible solutions to underground LHD’s autonomous scooping operation.However,a large amount of training data are required to be collected due to the limits of relative algorithms and there are several issues such as long acquisition time,high cost of existing equipment transformation and interference in normal operation of mines when collecting data in real environment.Under the existing technical conditions,virtual prototype technology can be used to build a simulation operation platform to meet the demand of data for autonomous scooping operation training. In this paper,the structure of a certain type of underground LHD with forward rotation four rods mechanism was taken as reference to analyze the linkages of working devices and articulated steering mechanism of the car body and a three-dimension dynamic model of LHD was established in V-REP combined with the map model generated by 3D Studio Max.12 basic ore models with 3 irregular shapes in 4 sizes were established to form blasted-pile randomly under control of scripts.Then,generated an interactive working environment including tunnel,drawing points,ore pass and simulated light sources to establish an simulation experiment platform combined with LHD model and blasted-pile and wrote embedded script to realize to communication between the external equipment and the simulation experiment platform to control walk and scooping operation of LHD and generation of blasted-pile.Finally,finished the real-time simulation of underground LHD’s scooping and loading ores at drawing point and transported it to the ore pass through the transportation tunnel.The simulation results show that the loading and unloading operations can be simulated under the virtual environment after practical test to meet the demands of data under reinforcement learning framework and the simulation platform can also be used as a training platform for underground workers.

Key words: V-REP, underground LHD, simulation platform, dynamics modelling, real-time control, motion simulation

中图分类号: 

  • TU56

图1

井下铲运机模型"

表1

井下铲运机主要部件边界框尺寸"

部件尺寸质量/kg
长度/m宽度/m高度/m
后车体1.202.003.501 000
前车体0.900.901.30300
轮胎1.201.204.5090
动臂0.300.651.5070
斗尖0.020.300.401
斗侧10.070.770.991
斗侧20.070.881.441
斗被10.130.662.401
斗被20.120.402.401
斗被30.320.832.401
斗被40.031.362.401

表2

井下铲运机主要关节参数设置"

关节运动类型运动模式位置最小值位置范围长度(m)/直径(m)
左前轮关节旋转扭矩/力--1/0.1
右前轮关节旋转扭矩/力--1/0.1
左后轮关节旋转扭矩/力--1/0.1
右后轮关节旋转扭矩/力--1/0.1
铰接关节旋转扭矩/力-30°60°1/0.1
转斗油缸前关节旋转反向运动学--1/0.1
转斗油缸后关节旋转反向运动学--1/0.1
转斗油缸关节移动反向运动学-0.5 m1 m1/0.1
动臂前关节旋转扭矩/力-90°120°1/0.1
动臂后关节旋转扭矩/力-15°100°1/0.1
举升油缸前关节旋转反向运动学--1/0.1
举升油缸后关节旋转反向运动学--1/0.1
举升油缸关节移动反向运动学-0.5 m1 m1/0.1

图2

具备完整功能的井下铲运机工作装置结构示意图"

表3

井下铲运机基本形状动力学参数"

对象对象间碰撞参数环境碰撞参数质量/kg主惯性矩/m2
XYZ
左前轮0000111111111111900.100.100.18
右前轮0000111111111111900.100.100.18
左后轮0000111111111111900.100.100.18
右后轮0000111111111111900.100.100.18
后车体11110000111111111 0000.660.480.21
前车体11110000111111113000.110.130.07
动臂0000111111111111700.230.120.03
铲斗11110000111111111000.290.660.59

表4

井下铲运机关节动力学参数"

对象(joint)是否启用电机最大力矩/(N·m)是否启用控制回路控制上限速度/[(°)·s-1]位置控制(Kp/Ki/Kd
左前轮关节1×106
右前轮关节1×106
左后轮关节1×106
右后轮关节1×106
铰接关节1×1063600.05/0.001/0
转斗油缸前关节
转斗油缸后关节
转斗油缸关节
动臂前关节5×1093600.05/0.001/0
动臂后关节1×1091000.02/0.001/0
举升油缸前关节
举升油缸后关节
举升油缸关节

图3

隐藏和展示贴图的井下铲运机模型"

图4

基础矿石模型"

图5

巷道模型"

图6

井下铲运机模型及其工作环境模型实时显示"

图7

手柄控制键位示意图"

图8

铰接转向示意图"

图9

不同时间段生成的矿石情况(档位为5)"

图10

井下铲运机铲装和行驶过程"

图11

卸矿过程"

1 王亚东,田立勇,李胜,等. 一种井下铲运机无线遥控系统[J]. 金属矿山,2018,47(3):142-145.
Wang Yadong,Tian Liyong,Li Sheng,et al. A wireless remote control system of underground scraper[J].Metal Mine,2018,47(3):142-145.
2 Siddharth D,Fredrik S,Ulf B,et al. Field test of neural-network based automatic bucket-filling algorithm for wheel-loaders[J]. Automation in Construction,2019,97:1-12.
3 赵志平,李新勇.虚拟样机技术及其应用和发展[J]. 机械研究与应用,2006,19(1):6-7.
Zhao Zhiping,Li Xinyong. Application and development of virtual prototyping[J]. Mechanical Research and Application,2006,19(1):6-7.
4 申焱华,韩丽,金纯.铰接式电动轮原地转向动力学联合仿真分析[J].系统仿真学报,2013,25(7):1691-1695.
Shen Yanhua,Han Li,Jin Chun.Co-simulation analysis of in-situ steering dynamics of articulated motor-driven vehicle[J]. Journal of System Simulation,2013,25(7):1691-1695.
5 Yang Z J,He Q H,Liu B. Dynamic characteristics of hydraulic power steering system with accumulator in load-haul-dump vehicle[J]. Journal of Central South University of Technology(English Edition),2004,4(11):451-456.
6 杨忠炯. 地下铲运机多体系统虚拟样机建模及系统动态特性仿真研究[D].长沙:中南大学,2007.
Yang Zhongjiong.Simulation Research on Virtual Prototype Modeling and Dynamic Characteristics of Multi-systems of Underground Load Dump Haul Vehicle[D].Changsha:Central South University,2007.
7 Gao Y,Shen Y H,Jin C. Analysis of handling stability for electric-driven articulated truck based on co-simulation[C]//International Conference on Mechatronics and Control.New York:IEEE,2014:738-743.
8 何邕,贾美薇,李萍奎,等. 基于虚拟样机的铲运机工作装置仿真及优化[J].系统仿真学报,2011,23(4):702-706.
He Yong,Jia Meiwei,Li Pingkui,et al.Simulation and optimization for work mechanism of load haul dump based on virtual prototype[J].Journal of System Simulation,2011,23(4):702-706.
9 邓崛,黄晓元,何文波,等. 基于虚拟样机的铲运机工作装置优化设计[J]. 机械设计与研究,2008,24(6):113-116.
Deng Jue,Huang Xiaoyuan,He Wenbo,et al.Optimum design of LHD working device based on virtual prototype[J]. Machine Design and Research,2008,24(6):113-116.
10 姚宗伟. 铰接转向工程车辆侧倾稳定性研究[D]. 长春:吉林大学,2013.
Yao Zongwei. Study on the Rollover Stability of Articulated Steer Engineering Vehicle[D].Changchun:Jilin University,2013.
11 Kwangseok O,Hakgu K,Kyungeun K,et al.Integrated wheel loader simulation model for improving performance and energy flow[J]. Automation In Construction,2015,58:129-143.
12 Li Y,Fang M,Feng M L,et al. Three dimensional modeling of the working linkage of load-haul-dump loader[J]. The International Journal of Advanced Manufacturing Technology,2007,32(9/10):856-862.
13 窦凤谦. 地下矿用铰接车路径跟踪与智能避障控制研究[D]. 北京:北京科技大学,2018.
Dou Fengqian.Research on Path Tracking and Obstacles Avoidance for Autonomous Underground Mining Articulated Vehicles[D].Beijing:University of Science and Technology Beijing,2018.
14 高海峰. 矿用铲运机前后机架的优化设计[D].太原:太原理工大学,2012.
Gao Haifeng.The Optimal Design on Front Frame and Back Frame for Mine-used Forklift[D].Taiyuan:Taiyuan University of Technology,2012.
15 石刚.铲运机工作装置的设计[J]. 矿山机械,2005,33(3):11-13.
Shi Gang. Design of LHD working device[J]. Mining and Processing Equipment,2005,33(3):11-13.
16 段化鹏. 虚拟现实中物理引擎关键技术的研究与应用[D]. 青岛:山东科技大学,2010.
Duan Huapeng.Research and Application of Physics Engine Key Techniques in Virtual Reality[D].Qingdao:Shandong University of Science and Technology,2010.
17 翟晓男. 基于虚拟样机技术的地下铲运机稳定性研究[D]. 北京:北京邮电大学,2015.
Zhai Xiaonan. Study on the Stability of the Underground Lhd Based on Virtual Protype Technology[D].Beijing:Beijing University of Posts and Telecommunications,2015.
18 陶永华.新型PID控制及其应用——第一讲PID控制原理和自整定策略[J]. 工业仪表与自动化装置,1997(4):60-64.
Tao Yonghua.New PID control and its application —Lecture 1 PID control principle and self-tuning strategy[J]. Industrial Instrumentation and Automation,1997(4):60-64.
19 王磊. 浅析游戏脚本语言Lua[J]. 电脑知识与技术,2010,6(4):889-901.
Wang Lei. The game scripting language Lua[J]. Computer Knowledge and Technology,2010,6(4):889-901.
20 杨占敏,王智明,张春秋. 轮式装载机[M]. 北京:化学工业出版社,2005.
Yang Zhanmin,Wang Zhiming,Zhang Chunqiu.Wheel Loader[M].Beijing:Chemical Industry Press,2005.
21 赵强,谢峰,余天明. 汽车自动变速箱的发展现状及其技术趋势[J]. 机械,2010,37(12):1-5.
Zhao Qiang,Xie Feng,Yu Tianming. Developmental status and technical direction of automatic transmission of motor vehicles machinery[J].Machinery,2010,37(12):1-5.
22 张栋林. 地下铲运机[M]. 北京:冶金工业出版社,2002.
Zhang Donglin.Underground LHD[M].Beijing:Metallurgical Industry Press,2002.
[1] 毕林,段长铭,任助理. 基于RANSAC的地下矿山巷道边线检测算法[J]. 黄金科学技术, 2020, 28(1): 105-111.
[2] 黄勇. 信息技术在露天采矿业中的应用[J]. J4, 1999, 7(4~5): 74-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!