img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (6): 761-770.doi: 10.11872/j.issn.1005-2518.2018.06.761

• • 上一篇    下一篇

基于不同岩体稳固级别的地下采场结构参数优化

万串串1,2(),陈国良3,周高明4,于世波1,2,解联库1,2,唐细卓3   

  1. 1. 北京矿冶科技集团有限公司,北京 102628
    2. 国家金属矿绿色开采国际联合研究中心,北京 102628
    3. 西藏华泰龙矿业开发有限公司,西藏 拉萨 850200
    4. 彝良驰宏矿业有限公司,云南 昭通 657600
  • 收稿日期:2018-02-13 修回日期:2018-05-11 出版日期:2018-12-31 发布日期:2019-01-24
  • 作者简介:万串串(1988-),男,江西南昌人,工程师,从事采矿工艺与岩石力学相关研究工作。
  • 基金资助:
    “十二五”国家科技支撑计划课题“彝良铅锌矿震后灾害治理与破碎矿体安全开采技术研究”(编号:2015BAB13B01)、国家重点研发计划课题“深部金属矿协同开采理论与技术”(编号:2016YFC0600709)、国家自然科学基金项目“大体积松散体水泥—水玻璃浆液可控灌注机理实验研究”(编号:41602365)和“采场充填体的三维应力解析及其强度设计理论”(编号:51774040)联合资助

Optimation of Underground Stope Structure Parameters Based on Different Rockmass Stability Classification

Chuanchuan WAN1,2(),Guoliang CHEN3,Gaoming ZHOU4,Shibo YU1,2,Lianku XIE1,2,Xizhuo TANG3   

  1. 1. BGRIMM Technology Group,Beijing 102628,China
    2. National Center for International Joint Research on Green Metal Mining,Beijing 102628,China
    3. Tibet Huatailong Mining Co. ,Ltd. ,Lhasa 850200,Tibet,China
    4. Yiliang Chihong Mining Co. ,Ltd. ,Zhaotong 657600,Yunnan,China
  • Received:2018-02-13 Revised:2018-05-11 Online:2018-12-31 Published:2019-01-24

摘要:

采场结构参数是矿山采矿方法的关键要素,对采矿生产能力、生产周期、排产计划和作业安全等后续问题起决定作用。以西藏某矿山为例,在采矿方法研究的基础上,首先通过工程地质调查、钻孔岩芯编录等工作获取节理裂隙等基础参数,以RMR岩体质量评价方法为指导,借助3Dmine地质建模软件实现了岩体质量的三维可视化评价。然后综合运用Barton跨度经验公式、Lang B.临界跨度和Wang J.神经网络跨度综合图表法,并结合采矿方法的需求初步确定了采场极限跨度。再利用Mathews稳定图法进行暴露面积的校核,最终确定了该矿地下采矿二期范围内不同岩体稳固级别的采场结构参数。通过系统说明采场结构参数优化的具体方法及计算步骤,为其他矿山开展此类工作提供技术参考。

关键词: 地下采矿, 中深孔, 岩体质量分级, 三维可视化, 采场极限跨度, 采场结构参数

Abstract:

Stope structure parameters selection is the important work after the mining method determined and can directly influence mine capacity,production cycle,mine schedule,mine safety and so on.Taking a Tibet mine for example,based on mining method,firstly,basic parameters,such as joint information were acquired by engineering geology survey and drill core logging.Three-dimensional visualization evaluation of rockmass quality was made on 3Dmine software based on RMR rockmass evaluation method.Secondly,adopting Barton span empirical formula and comparison diagram of Lang B.critical span and Wang J.neural network span,stope critical span was initially identified considering the demand for mining method.Finally,stope permitted exposure area was verified by Mathews stability diagram,and stope structure parameters were determined for different rockmass stability classification in the second phase of underground mining.The specific method and calculation procedure for optimation of stope structure parameters were systematically described in the paper,which can supply the technical reference for similar work in other mines.

Key words: underground mining, medium-length hole, rockmass quality classification, 3D visualization, stope critical span, stope structure parameter

中图分类号: 

  • TD853

图1

典型的分段空场嗣后充填法方案"

图2

立体图像现场实测(a)、合成原理(b)及三维模型重构(c)"

表1

二期工程地质调查优势产状分布统计"

岩性 优势产状 体密度/(条·m-3
大理岩 35°∠80° 11.8
73°∠74°
12°∠65°
灰岩 331°∠58° 8.1
253°∠74°
195°∠78°
矽卡岩 350°∠61° 9.0
86°∠63°

图3

钻孔岩芯编录"

图4

钻孔与RMR岩体质量评价范围对照图"

图5

组合后的RMR样品量统计分布图"

图6

统计区域范围内的三维岩体质量评价模型及统计结果"

表2

Barton经验公式计算的采场宽度统计"

岩体稳固级别 RMR Q SRF J w Q ? ESR 采场宽度/m
稳固 64 8.5770 2.5 1.0 21.4424 3.5 16.5
中等稳固 60 4.6416 2.5 1.0 11.6040 3.5 12.9
一般稳固 54 1.8478 2.5 1.0 4.6196 3.5 8.9
不稳固 <54 - - - - - -

图7

Lang B.临界跨度和Wang J.神经网络跨度对比"

表3

图表法采场宽度统计"

岩体稳固级别 RMR Q 采场临界宽度(W)/m
Lang B.图表法 Wang J.修正图表法
稳固 64 8.5770 14.0 11.0
中等稳固 60 4.6416 11.0 9.0
不稳固 54 1.8478 6.5 6.0
氧化破碎带 < 54 - - -

表4

采场临界宽度综合结果"

岩体稳固级别 RMR 采场临界宽度(W)/m
稳固 ≥64 15.0
中等稳固 60~64 12.0
不稳固 54~60 7.5
氧化破碎带 < 54 -

图8

Wang J.神经网络跨度概率分布图"

表5

临界水力半径R与可能的采场结构参数计算所得的水力半径R′对比"

岩体稳固类型 RMR Q SRF J w Q? A B C 稳定值N 临界水力半径R 长/m 宽(高)/m 长/宽(高) R′ R > R′

稳固

(单分段)

顶板 64.00 8.5770 2.5 1 21.4424 0.45 0.8 1 7.7193 6.5330 57.5 15 3.83 5.9483 1
帮壁 64.00 8.5770 2.5 1 21.4424 0.45 0.3 8 23.1578 9.9264 57.5 20 2.88 7.4194 1
帮壁 64.00 8.5770 2.5 1 21.4424 0.45 0.3 8 23.1578 9.9264 57.5 25 2.30 8.7121 1

稳固

(双分段)

顶板 64.00 8.5770 2.5 1 21.4424 0.45 0.8 1 7.7193 6.5330 57.5 15 3.83 5.9483 1
帮壁 64.00 8.5770 2.5 1 21.4424 0.45 0.3 8 23.1578 9.9264 57.5 45 1.28 12.6220 0
中等稳固 顶板 60.00 4.6416 2.5 1 11.6040 0.45 0.8 1 4.1774 5.1709 57.5 12 4.79 4.9640 1
帮壁 60.00 4.6416 2.5 1 11.6040 0.45 0.3 8 12.5323 7.8569 57.5 20 2.88 7.4194 1
帮壁 60.00 4.6416 2.5 1 11.6040 0.45 0.3 8 12.5323 7.8569 57.5 25 2.30 8.7121 0
不稳固 顶板 54.00 1.8478 2.5 1 4.6196 0.45 0.8 1 1.6631 3.6412 57.5 7.5 7.67 3.3173 1
帮壁 54.00 1.8478 2.5 1 4.6196 0.45 0.3 8 4.9892 5.5326 57.5 20 2.88 7.4194 0
帮壁 54.00 1.8478 2.5 1 4.6196 0.45 0.3 8 4.9892 5.5326 57.5 25 2.30 8.7121 0

表6

临界水力半径R与可能的采场结构参数计算R′对比(修正后)"

岩体稳固类型 RMR Q SRF J w Q? A B C 稳定值N 临界水力半径R 长/m 宽(高)/m 长/宽(高) R? R > R?

稳固

(单分段)

顶板 64.00 8.5770 2.5 1 21.4424 0.45 0.8 1 7.7193 6.5330 57.5 15 3.83 5.9483 1
帮壁 64.00 8.5770 2.5 1 21.4424 0.45 0.3 8 23.1578 9.9264 57.5 20 2.88 7.4194 1
帮壁 64.00 8.5770 2.5 1 21.4424 0.45 0.3 8 23.1578 9.9264 57.5 25 2.30 8.7121 1

稳固

(双分段)

顶板 64.00 8.5770 2.5 1 21.4424 0.45 0.8 1 7.7193 6.5330 57.5 15 3.83 5.9483 1
帮壁 64.00 8.5770 2.5 1 21.4424 0.45 0.3 8 23.1578 9.9264 28.75 45 1.57 8.7712 1
中等稳固 顶板 60.00 4.6416 2.5 1 11.6040 0.45 0.8 1 4.1774 5.1709 57.5 12 4.79 4.9640 1
帮壁 60.00 4.6416 2.5 1 11.6040 0.45 0.3 8 12.5323 7.8569 57.5 20 2.88 7.4194 1
帮壁 60.00 4.6416 2.5 1 11.6040 0.45 0.3 8 12.5323 7.8569 28.75 25 1.15 6.6860 1
不稳固 顶板 54.00 1.8478 2.5 1 4.6196 0.45 0.8 1 1.6631 3.6412 20 7.5 2.67 2.7273 1
帮壁 54.00 1.8478 2.5 1 4.6196 0.45 0.3 8 4.9892 5.5326 20 20 1.00 5.0000 1
帮壁 54.00 1.8478 2.5 1 4.6196 0.45 0.3 8 4.9892 5.5326 20 25 1.25 5.5556 0
1 陈顺满,吴爱祥,王贻明,等 .基于响应面法的破碎围岩条件下采场结构参数优化研究[J].岩石力学与工程学报,2017,36(增1):3499-3508.
Chen Shunman , Wu Aixiang , Wang Yiming ,et al .Optimization research on stope structure parameters in broken rock conditions based on the response surface method[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(Supp.1):3499-3508.
2 周科平,王星星,高峰 .基于强度折减与ANN-GA模型的采场结构参数优化[J].中南大学学报(自然科学版),2013,44(7):2848-2854.
Zhou Keping , Wang Xingxing , Gao Feng .Stope structural parameters optimization based on strength reduction and ANN-GA model[J].Journal of Central South University(Science and Technology),2013,44(7):2848-2854.
3 许宏亮,刘召胜,石露,等 .用Mathews稳定图法与数值分析法优化充填开采矿山采场结构参数[J].金属矿山,2015,44(12):19-23.
Xu Hongliang , Liu Zhaosheng , Shi Lu ,et al .Optimizing the stope structural parameters using Mathews empirical analysis method and numerical analysis method[J].Metal Mine,2015,44(12):19-23.
4 江飞飞,李向东,张融江,等 .基于3DEC的两步骤空场嗣后充填采场结构参数优化[J].地下空间与工程学报,2016,12(增2):805-810.
Jiang Feifei , Li Xiangdong , Zhang Rongjiang ,et al .Optimization research on structural parameters of two-step open stoping with subsequent filling based in 3DEC[J].Chinese Journal of Underground Space and Engineering,2016,12(Supp.2):805-810.
5 阳雨平,吴爱祥 .浅析国内缓倾斜中厚矿体回采现状及进展[J].黄金,2002,23(1):14-17.
Yang Yuping , Wu Aixiang .Elementary analysis of the current situation and advance in stoping of gentle dip and medium thickness orebody[J].Gold,2002,23(1):14-17.
6 尹升华,吴爱祥 .缓倾斜中厚矿体采矿方法现状及发展趋势[J].金属矿山,2007,37(12):10-13.
Yin Shenghua , Wu Aixiang .Status quo of mining methods for gently inclined medium-thick orebodies and their development trend[J].Metal Mine,2007,37(12):10-13.
7 赵彬,王新民,张钦礼 .缓倾斜中厚难采矿体开采技术探讨[J].化工矿物与加工,2008,37(2):34-37.
Zhao Bin , Wang Xinmin , Zhang Qinli .Study on the mining method for gently inclined medium-thick ore body[J].Industrial Minerals and Processing,2008,37(2):34-37.
8 潘常甲 .关于缓倾斜厚大矿体采矿方法的探讨[J].金属矿山,2001,31(4):19-24.
Pan Changjia .On the mining method of slowly inclined large and thick ore body[J].Metal Mine,2001,31(4):19-24.
9 胡海波 .低品位厚大缓倾斜难采矿体采矿方法优化研究[J].矿业研究与开发,2015,35(8):9-11.
Hu Haibo .Optimization of mining method for gently inclined,thick,large and difficult-to-mine orebody with low grade[J].Mining Research and Development,2015,35(8):9-11.
10 曾凌方 .缓倾斜厚大矿体采矿方法优化[J].现代矿业,2015(4):17-19.
Zeng Lingfang .Optimization of the mining method of slowly inclined large and thick orebody[J].Modern Mining,2015(4):17-19.
11 王培涛,杨天鸿,于庆磊,等 .节理边坡岩体参数获取与PFC2D应用研究[J].采矿与安全工程学报,2013,30(4):560-565.
Wang Peitao , Yang Tianhong , Yu Qinglei ,et al .On obtaining jointed rock slope geo-parameters and the application of PFC2D [J].Journal of Mining and Safety Engineering,2013,30(4):560-565.
12 王述红,杨勇,王洋,等 .基于数字摄像测量的开挖空间模型及不稳块体的快速识别[J].岩石力学与工程学报,2010,29(增1):3432-3438.
Wang Shuhong , Yang Yong , Wang Yang ,et al .Spatial modelling and quick identification of unstable rock blocks based on digital photogrammetry[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp.1):3432-3438.
13 杨天鸿,师文豪,于庆磊,等 .巷道围岩渗流场和应力场各向异性特征分析及应用[J].煤炭学报,2012,37(11):1815-1822.
Yang Tianhong , Shi Wenhao , Yu Qinglei ,et al .The anisotropic properties analysis of the rock mass surrounding the roadway’s in seepage and stress field[J].Journal of China Coal Society,2012,37(11):1815-1822.
14 苏龙,刘爱华 .考虑岩体质量分级的地下采场稳定性研究[J].中国安全科学学报,2014,24(12):9-15.
Su Long , Liu Aihua .Study on underground mining stope stability based on quality classification of rock masses[J].China Safety Science Journal,2014,24(12):9-15.
15 于世波,王辉,曹辉,等 .多种工程岩体质量评价方法的关联及其应用探讨[J].有色金属(矿山部分),2015,67(1):83-86.
Yu Shibo , Wang Hui , Cao Hui ,et al .Discussion on interrelation of several quality evaluation methods of engineering rock mass and its application[J].Nonferrous Metals(Mining Section),2015,67(1):83-86.
16 邵勇,阎长虹,马庆华 .岩体质量评价体系的综合应用分析[J].地下空间与工程学报,2016,12(4):1129-1134.
Shao Yong , Yan Changhong , Ma Qinghua .Comprehensive application of rock quality evaluation system[J].Chinese Journal of Underground Space and Engineering,2016,12(4):1129-1134.
17 Brady B H G , Brown E T .地下采矿岩石力学[M].第三版.
佘诗刚,朱万成,译 .北京:科学出版社,2011.
Brady B H G , Brown E T .Rock Mechanics for Underground Mining[M].Third Edition.She Shigang,Zhu Wancheng,trans.Beijing:Science Press,2011.
18 Barton N , Lunde J , Lien R .Estimation of support requirements for underground excavations[C]//Proceedings of 16th Symposium on Rock Mechanics.Minneapolis:American Society of Civil Engineers,1977.
19 Wang J , Pakalnis R , Milne D ,et al .Empirical underground entry type excavation span design modification[C]//Proceedings of 53rd Annual Conference.Richmond:The Canadian Geotechnical Society,2000.
20 Brown E T .Blcok Caving Geomechanics[M].Melbourne:Julius Kruttschnitt Mineral Research Centre,2003:3-12.
[1] 刘定一, 王李管, 陈鑫, 钟德云, 徐志强. 地下矿中长期计划多目标优化及应用研究[J]. 黄金科学技术, 2018, 26(2): 228-233.
[2] 刘科伟,曾庆田,刘栋. 边坡复杂地质结构三维可视化及数值模型构建[J]. 黄金科学技术, 2016, 24(2): 83-89.
[3] 牛勇,李克钢. 房柱采矿法采场结构参数优化理论研究及应用[J]. 黄金科学技术, 2015, 23(6): 75-80.
[4] 阳雨平,胡德炯. 复式桶形直眼掏槽中深孔爆破法掘进实验[J]. 黄金科学技术, 2015, 23(6): 64-69.
[5] 吕志云,曾云煜. 无切井扇形中深孔爆破拉槽法在红旗沟—深水潭金矿的应用[J]. 黄金科学技术, 2015, 23(4): 72-74.
[6] 万孝衡,王新民,朱阳亚,姜志良,陈秋松. 基于组合赋权TOPSIS法的采场结构参数优选[J]. 黄金科学技术, 2014, 22(5): 69-73.
[7] 马云庆,王瑞星,何顺斌,王辉,于常先,邱云胜. 无底柱后退式竖向分条分段充填采矿法研究[J]. 黄金科学技术, 2014, 22(4): 67-71.
[8] 于常先,何顺斌,杨尚欢,黄维. 中深孔分段落矿嗣后充填采矿实践[J]. 黄金科学技术, 2014, 22(4): 85-88.
[9] 于常先,赵明宣,李晓东. 中深孔松动控制爆破技术在三山岛金矿的应用[J]. J4, 2012, 20(4): 58-61.
[10] 朱学礼. 基于DGSS 体系的数字地勘及矿体三维建模技术在新城金矿中的应用[J]. J4, 2011, 19(6): 65-68.
[11] 于清军, 于清源, 路仁江, 孙建, 黄山, 刘吉兴. 浅孔留矿与中深孔爆破联合回采复杂矿体技术研究[J]. J4, 2011, 19(1): 49-50.
[12] 徐东,胡忠强. 中深孔采矿法在新城金矿的研究与应用[J]. J4, 2010, 18(5): 72-75.
[13] 靳社英. 中深孔挤压崩矿连续采矿法的应用[J]. J4, 2010, 18(5): 68-71.
[14] 白复锌,王善功,安智海. 分段中深孔挤压崩矿连续采矿法在山东鑫汇金矿的应用[J]. J4, 2010, 18(5): 64-67.
[15] 上官宽平, 张滨州. 一次成井技术在杨家坝铁矿采矿中的应用[J]. J4, 2005, 13(1-2): 67-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!