img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2016, Vol. 24 ›› Issue (4): 47-53.doi: 10.11872/j.issn.1005-2518.2016.04.047

• 矿产勘查与资源评价 • 上一篇    下一篇

甘肃厂坝铅锌矿床黄铁矿流体包裹体He-Ar同位素体系

焦学尧1,2,樊小龙1,2,余平辉1,2,蒋国豪3,熊文勃1,2,成志雁1,2,马锦龙1,2   

  1. 1.兰州大学地质科学与矿产资源学院,甘肃  兰州    730000;
    2.甘肃省西部矿产资源重点实验室,甘肃  兰州    730000;
    3.中国科学院地球化学研究所矿床地球化学国家重点实验室,贵州  贵阳   550081
  • 收稿日期:2016-06-30 修回日期:2016-07-28 出版日期:2016-08-28 发布日期:2016-11-17
  • 通讯作者: 马锦龙(1971-),男,甘肃武都人,副教授,从事地球化学研究工作。 E-mail:mjinlong@lzu.edu.cn
  • 作者简介:焦学尧(1987-),男,甘肃靖远人,硕士研究生,从事矿物学、岩石学和矿床学研究工作。jiaoxy15@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目“甘肃文县阳山金矿中稀有气体同位素及其与流体主要组分的多元综合示踪”(编号:41173014)资助

He-Ar Isotopic System of Fluid Inclusions in Pyrite from the Changba Lead-Zinc Deposit in Gansu Province

JIAO Xueyao1,2,FAN Xiaolong1,2,YU Pinghui1,2,JIANG Guohao3,XIONG Wenbo1,2,CHENG Zhiyan1,2,MA Jinlong1,2   

  1. 1.School of Geological Sciences and Mineral Resources,Lanzhou Uiversity,Lanzhou    730000,Gansu,China;
    2.Key Laboratory of Mineral Pesources in Western of Gansu Province,Lanzhou    730000,Gansu,China;
    3.Stata Key Laboratory of  Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang    550081,Guizhou,China
  • Received:2016-06-30 Revised:2016-07-28 Online:2016-08-28 Published:2016-11-17

摘要:

稀有气体是一种研究成矿古流体来源的灵敏示踪剂,其同位素组成对揭示成矿流体来源、成因和演化等信息意义重大。甘肃厂坝铅锌矿成矿流体来源方面的研究至今仍存争议,本研究通过对该矿床黄铁矿流体包裹体He-Ar同位素组成特征的分析,结合研究区具体的矿床地质背景,对其成矿流体来源进行了探讨。主要结果表明:3He/4He值为0.0137~0.0758 Ra,说明成矿流体具有壳源特征;40Ar/36Ar值的平均比值为438.78,高于大气饱和水的Ar同位素特征值(40Ar/36Ar=295.5),说明成流体中有壳源放射性成因的40Ar加入;成矿流体中相对低的40Ar*(%)值和40Ar*/4He比值,表明大气饱和水曾参与了成矿作用,且有部分成矿流体捕获了围岩中高放射成因的4He。上述结果从稀有气体同位素角度为厂坝铅锌矿成矿流体来源提供了证据,说明厂坝铅锌矿成矿流体是泥盆纪喷流沉积作用和印支—燕山早期构造改造成矿作用的综合产物。

关键词: 厂坝铅锌矿, 氦氩同位素, 成矿流体, 来源

Abstract:

The research about the Changba lead-zinc deposit has owned a wide concerns,especially in the undetermined sources of ore-forming fluids.The study mainly discussed the sources of ore-forming fluids according to analyze helium and argon isotopes compositions of fluid inclusions in pyrite from the Changba lead-zinc deposits.The results show that 3He/4He ratios are range from 0.0137 to 0.0758 Ra,which indicates that the ore-forming fluids were crust-derived fluids.The average of 40Ar/36Ar ratios is 438.78,which is higher than that of the air saturated water(295.5),indicated that radiogenic Ar in crust joined in ore-forming fluids.The low ratios of 40Ar*(%) and 40Ar*/4He showed that the air saturated water involved in the ore-forming process,and part of ore-fluids captured higher radiogenic 4He in surrounding rock.It is concluded that the ore-forming fluids of Changba lead-zinc deposit is formed by a comprehensive action of sedmentary-exhalative metallization in Devonian and tectonic alteration Indo-early Yanshan.

Key words: Changba lead-zinc deposit, helium and argon isotopes, ore-forming fluids, sources

中图分类号: 

  • P597

[1] 李兆丽,胡瑞忠,彭建堂,等.稀有气体同位素示踪成矿古流体研究进展[J].地球科学进展,2005,20(1):57-63.
[2] 马锦龙,陶明信.稀有气体同位素地球化学研究进展[J].地球学报,2002,23(5):471-476.
[3] 王梁,雷时斌,贾丽琼.流体包裹体在矿床学研究中的应用[J].黄金科学技术,2011,19(4):25-30.
[4] 倪培,范宏瑞,丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报,2014(1):1-5.
[5] 卢焕章,郭迪江.流体包裹体研究的进展和方向[J].地质论评,2000(4):385-392.
[6] 古志宏,赵俊兴,周永章,等.西秦岭厂坝—李家沟铅锌矿矿床地质特征和成因分析[J].中山大学研究生学刊(自然科学、医学版),2007,28(3):40-46.
[7] 孙省利,高兆奎,魏晓辉,等.西成铅锌成矿带泥盆系硅质岩地质地球化学特征与热水沉积成矿[J].西北地质,2000,33(2):1-7.
[8] 俞中辉,祝新友,童随友,等.西成地区铅—锌矿、金矿硫铅同位素特征及成矿关系的研究[J].矿产与地质,2008,22(3):196-203.
[9] 祝新友,汪东波,卫治国,等.西成地区碳酸盐岩REE特征及厂坝矿床白云岩成因[J].矿床地质,2005,24(6):613-620.
[10] 王天刚,倪培,沈昆,等.西秦岭厂坝—李家沟铅锌矿床流体包裹体特征及成因意义[J].南京大学学报(自然科学版),2011,47(6):731-743.
[11] 胡乔青,王义天,魏然,等.西秦岭厂坝—李家沟铅锌矿床矽卡岩化与成矿关系探讨[J].矿物学报,2013(增):12-13.
[12] 殷先明.西秦岭中生代花岗岩类岩浆作用及成矿[J].甘肃地质,2015(1):1-10.
[13] 祝新友,王瑞廷,汪东波.西秦岭铅锌金铜银矿床模式研究及找矿预测[M].北京:地质出版社,2011.
[14] 杨松年,缪远兴.厂坝—李家沟铅锌矿床地质特征[J].矿床地质,1986,5(2):14-23.
[15] 王集磊,何伯犀,李建中.中国秦岭型铅锌矿床[M].北京:地质出版社,1996.
[16] 陈光.西成铅锌矿化集中区热水沉积成矿作用的岩矿证据[J].甘肃地质学报,2002,11(1):32-43.
[17] 邓海军,朱多录.甘肃西成矿集区成矿系列及找矿前景J].地质与勘探,2010,46(6):1045-1050.
[18] 匡文龙,陈年生,张万虎,等.厂坝—李家沟SEDEX型铅锌矿床成矿作用研究[J].大地构造与成矿学,2009,33(4):542-547.
[19] 李永军,高占华,李英,等.西秦岭温泉岩浆混合花岗岩的地球化学特征[J].地质地球化学,2003,31(4):43-49.
[20] 胡瑞忠.成矿流体氦、氩同位素地球化学[J].矿物岩石地球化学通报,1997,16(2):52-56.
[21] 胡瑞忠,毕献武,Turner G,等.哀牢山金矿带金成矿流体He和Ar同位素地球化学[J].中国科学(地球科学),1999,29(4):321-330.
[22] 杨猛,王居里,王建其,等.新疆望峰金矿成矿流体的He、Ar同位素示踪[J].地球学报,2012,33(5):794-800.
[23] 张东亮,郑德顺,彭建堂,等.矿物流体包裹体中稀有气体的保存能力初探[J].矿床地质,2011,30(5):933-940.
[24] 李晓峰,毛景文,王义天,等.惰性气体同位素和卤素示踪成矿流体来源[J].地质论评,2003,49(5):513-521.
[25] 李延河,李金城,宋鹤彬,等.矿物流体包裹体的氦同位素分析及地质应用[J].矿床地质,2002,21(增):982-985.
[26] 李英.西成矿田层控铅锌矿床稳定同位素和包裹体研究[J].地球科学与环境学报,1986,8(2):40-50.
[27] Knauth L P,Beeunas M A.Isotope geochemistry of fluid inclusions in permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters[J].Geochimica et Cosmochimica Acta,1986,50(3):419-433.
[28] Zhu L,Zhang G,Guo B,et al.He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background[J].Chinese Science Bulletin,2009,54(14):2479-2492.
[29] Burnard P G,Polya D A.Importance of mantle derived fluids during granite associated hydrothermal circulation:He and Ar isotopes of ore minerals from Panasqueira[J].Geochimica et Cosmochimica Acta,2004,68(7):1607-1615.
[30] Stuart F M,Burnard P G,Taylor R P,et al.Resolving mantle and crustal contributions to ancient hydrothermal fluids-He-Ar isotopes in fluid inclusions from Dae-Hwa W-Mo minerali-zation,South-Korea[J].Geochimica et Cosmochimica Acta,1995,59(22):4663-4673.
[31] Hu R Z,Burnard P G,Bi X W,et al.Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt,SW China[J].Chemical Geology,2004,203(3/4):305-317.
[32] Hu R Z,Burnard P G,Bi X W,et al.Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit,Jiangxi Province,China:Evidence from He,Ar and C isotopes[J].Chemical Geology,2009,266(1/2):86-95.
[33] Burnard P G,Hu R,Turner G,et al.Mantle,crustal and atmospheric noble gases in Ailaoshan gold deposits,Yunnan Province,China[J].Geochimica et Cosmochimica Acta,1999,63(10):1595-1604.
[34] Kendrick M A,Burgess R,Pattrick R A D,et al.Fluid inclusion noble gas and halogen evidence on the origin of CuPorphyry mineralising fluids[J].Geochimica et Cosmochimica Acta,2001,65(16):2651-2668.
[35] 窦元杰.甘肃成县厂坝—李家沟热水—沉积铅锌矿床地质特征[J].甘肃地质学报,1992,1(2):32-50.
[36] 丁德建,梁金龙,孙卫东,等.阳山金矿成矿流体的He-Ar同位素示踪[J].矿物岩石地球化学通报,2014,33(6):813-819.
[37] Dunai T J,Baur H.Helium,neon,and argon systematics of the european subcontinental mantle-implications for its geochemical evolution[J].Geochimica et Cosmochimica Acta,1995,59(13):2767-2783.
[38] 胡瑞忠,毕献武,Turner G,等.马厂箐铜矿床黄铁矿流体包裹体He-Ar同位素体系[J].中国科学(地球科学),1997,27(6):503-508.
[39] 马国良,祁思敬,李英,等.厂坝铅锌矿床中钠长石岩的成因探讨[J].地质地球化学,1998,26(2):29-33.
[40] 孙省利, 曾允孚.西成矿化集中区热水沉积岩物质来源的同位素示踪及其意义[J].沉积学报, 2002,20(1):41-46.
[41] 朱多录,孙柏年,闫德飞,等.秦岭西成矿集区构造演化与铅锌成矿关系[J].地质学报,2012,86(8):1291-1297.
[42] 祝新友,汪东波,卫治国,等.甘肃西成地区南北铅锌矿带矿床成矿特征及相互关系[J].中国地质,2006,33(6):1361-1370.

[1] 郭云成,刘家军,毛世东,李虎 . 川西甘孜—理塘缝合带中段存在奥陶纪外来岩块的证据:碎屑锆石U-Pb年龄[J]. 黄金科学技术, 2017, 25(6): 9-20.
[2] 张永华,王建中,钱壮志,徐刚,姜超. 南秦岭白马山岩体Sr、Nd、Pb同位素组成及源区示踪[J]. 黄金科学技术, 2015, 23(5): 20-27.
[3] 张彦,陈文,雍拥,刘新宇. (U—Th)/He定年技术在矿床年代学研究中的应用前景[J]. J4, 2008, 16(4): 1-3.
[4] 应汉龙. 云南大坪金矿床围岩蚀变和同位素地球化学特征[J]. J4, 1998, 6(4): 14-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!