img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2024, 32(1): 13-30 doi: 10.11872/j.issn.1005-2518.2024.01.142

矿产勘查与资源评价

南秦岭镇安西部钨钼矿集区成矿物质来源研究

韩珂,1, 杨兴科2

1.中煤科工西安研究院(集团)有限公司,陕西 西安 710077

2.长安大学地球科学与资源学院,陕西 西安 710054

Study on the Ore-forming Materials Source of the Western Zhen’an W-Mo Ore Concentration Area in Southern Qinling Moutains

HAN Ke,1, YANG Xingke2

1.CCTEG Xi’an Research Institute(Group) Co. , Ltd. , Xi’an 710077, Shaanxi, China

2.School of Earth Sciences and Resources, Chang’an University, Xi’an 710054, Shaanxi, China

收稿日期: 2023-10-10   修回日期: 2023-11-20  

基金资助: 陕西省地勘基金成果集成项目“陕西秦岭成矿带金矿成矿规律与找矿预测”.  61201506280

Received: 2023-10-10   Revised: 2023-11-20  

作者简介 About authors

韩珂(1990-),男,陕西礼泉人,博士,助理研究员,从事矿田构造和煤矿地质研究工作hanke@cctegxian.com , E-mail:hanke@cctegxian.com

摘要

为了查明南秦岭镇安西部大型钨钼多金属矿集区成矿物质来源,在矿床基础地质研究的基础上,运用岩石地球化学、硫化物单矿物硫同位素地球化学和锆石U-Pb同位素、辉钼矿Re-Os同位素地球化学等方法,对复式中酸性侵入体与钨钼成矿的时空关系和成因联系进行深入研究。结果表明:懒板凳岩体田湾单元、王家坪隐伏岩体和花岗细晶岩脉富集Si元素,且Mg#值和稀土总量较低,稀土元素配分曲线呈明显的四分组效应并具有强负Eu异常,岩浆分异结晶程度高;懒板凳岩体九间屋单元和王家坪隐伏岩体锆石U-Pb同位素年龄分别为(222.7±2.6)Ma和(201.6±4.7)Ma,棋盘沟钨矿床和江口钼矿床中辉钼矿Re-Os同位素模式年龄分别为(199.7±3.9)Ma和(198.7±3.9)Ma;钨钼矿床中硫化物单矿物δ34S值为3.6‰~10.2‰,推测成矿物质来源于复式岩体晚阶段形成于190~200 Ma之间的高分异演化酸性侵入体。

关键词: 钨钼矿集区 ; 成矿物质来源 ; 复式岩体 ; 镇安西部 ; 南秦岭

Abstract

The large tungsten-molybdenum polymetallic ore concentration area in the western of Zhen’an,Shaanxi Province is located in the north of the southern Qinling tectonic belt,where faults,joints and complex intermediate-acid intrusions are closely related to skarn type and quartz vein type tungsten-molybdenum mineralization.Although certain exploration and research achievements have been made in the study area,it is still unclear which period of magmatic activity in the complex massif is related to mineralization.That is,the source of ore-forming materials is still unclear,which restricts the further exploration and prospecting.On the basis of the basic geological study of the deposit,related magmatic rock samples were collected for geochemical testing and zircon U-Pb isotope dating,sulfide mineral for sulfur isotope analysis,and molybdenite for Re-Os isotope dating.Based on the spatio-temporal relationship between complex massif and tungsten-molybdenum mineralization,it is considered that the Tianwan unit of Lanbandeng rock mass,Wangjiaping concealed rock mass and granitic fine-grained dike are rich in SiO2,and the Mg# and the total REE content are low.The REE distribution curve shows obvious tetrad effect with strong negative Eu anomaly,and the magmatic differentiation crystallization degree is high.Zircon U-Pb isotope ages of Jiujianwu unit of Lanbandeng rock mass and Wangjiaping concealed rock mass are (222.7±2.6)Ma and (201.6±4.7)Ma,respectively. The Re-Os isotope model ages of molybdenite in Qipangou tungsten deposit and Jiangkou molybdenum deposit are (199.7±3.9)Ma and (198.7±3.9)Ma,respectively. The sulfide mineral δ34S of tungstan-molybdenum deposit ranges from 3.6‰ to 10.2‰.The source of ore-forming materials should be the acid intrusion formed in late stage between 190 Ma and 200 Ma,which is represented by Tianwan unit of Lanbandeng rock mass,Wangjiaping concealed rock mass and granitic dike.

Keywords: tungsten-molybdenum ore concentration area ; ore-forming material source ; complex rock mass ; western area of Zhen’an ; southern Qinling

PDF (10765KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩珂, 杨兴科. 南秦岭镇安西部钨钼矿集区成矿物质来源研究[J]. 黄金科学技术, 2024, 32(1): 13-30 doi:10.11872/j.issn.1005-2518.2024.01.142

HAN Ke, YANG Xingke. Study on the Ore-forming Materials Source of the Western Zhen’an W-Mo Ore Concentration Area in Southern Qinling Moutains[J]. Gold Science and Technology, 2024, 32(1): 13-30 doi:10.11872/j.issn.1005-2518.2024.01.142

陕西镇安西部钨钼多金属矿集区位于南秦岭构造带北部。区内不同走向和规模的断裂极为发育,中酸性岩浆岩呈大型复式岩体和岩脉出露,成矿条件较好,目前已发现许多矽卡岩型和石英脉型等大—中型钨钼多金属矿床126处,具有巨大的找矿潜力(李双庆等,2010王洁明等,2017王义忠等,2017)。前人研究表明,矿集区内钨钼多金属矿床(化)与早中生代构造—岩浆活动密切相关,矿(化)体受区域宁陕—柞水NE向构造控制明显,多赋存在NE-NNE向断裂及节理裂隙中。区内中酸性复式岩体(脉)大多在晚三叠—早侏罗世(220~200 Ma)侵入,其中早中生代酸性岩浆岩与钨钼多金属成矿作用关系密切,部分岩体(脉)中可见钨钼多金属矿化(代军治等,2015)。截至目前,区内钨钼等多金属矿床的确切成矿时代和成矿物质来源仍不明确,复式岩体中哪一期岩浆活动与钨钼多金属矿集区的形成直接相关也不明确,严重制约了钨钼成矿规律的认识及下一步找矿工作。本文在矿集区内典型钨钼矿床地质特征研究的基础上,通过开展同位素年代学及示踪、岩浆岩、岩石地球化学及成岩年代学等研究,旨在明确钨钼多金属矿床的成矿母岩体,研究中酸性岩浆岩钨钼多金属成矿专属性,为矿集区深部及外围找矿靶区圈定提供科学依据,指导矿集区下一步钨钼多金属矿产勘查工作。

1 矿集区地质概况

陕西镇安西部钨钼多金属矿集区是山阳—柞水—镇安—旬阳晚古生代—中生代多金属成矿带的重要组成部分。区内地层以古生界为主,岩性为一套浅变质碎屑岩和碳酸盐岩,走向NW,倾向NE-NNE。构造主要为一系列规模不一的断裂和褶皱等,走向以NE-NNE向为主,NW-NWW向次之。NE向构造以张性为主,局部发育NE-NNE向断裂—裂隙密集带。岩体主要有懒板凳、胭脂坝、四海坪和东江口岩体,均为中酸性复式岩体;侵入时代集中在早中生代,具有多期多阶段活动特征。

除此之外,沿NE-NNE向张性断裂及裂隙中还发育有大量的花岗质岩脉和石英脉,大多可见钨钼多金属矿化。区内与中酸性岩浆有关的钨钼矿化类型主要有矽卡岩型、石英脉型和伟晶岩型,下寒武统—中奥陶统石瓮子组和中—上奥陶统两岔口组是钨钼矿(化)体的主要赋矿地层,金属矿(化)体主要位于岩体与围岩接触带或岩体内,以东阳钨矿床、棋盘沟钨矿床、核桃坪钨矿床和桂林沟钨钼矿床等为代表(毛归来等,2012)(图1)。

图1

图1   镇安西部钨钼多金属矿集区矿产地质图(修改自杨兴科等,2018

1.第四系全新统冲积层(Qhal);2.四峡口组(C2s);3.九里坪组(D3-C1j);4.星红铺组(D3x);5.古道岭组(D2-3g);6.大枫沟组(D2d);7.牛耳川组(D2n);8.石家沟组(D2sh);9.公馆组(D1g);10.梅子垭组(S1-2m);11.斑鸠关组(О3-S1-2b);12.两岔口组(O2-3l);13.白龙洞组(О1-2bl);14.石瓮子组(∈1-O1-2s);15.水沟口组(∈1sg);16.灯影组(Z2dy);17.陡山沱组(Z1d);18.耀岭河岩群(Pt3Y);19.陡岭岩群(Pt1D);20.响潭沟变质酸性杂岩;21.小磨岭火山杂岩;22.胭脂坝岩体鹰咀石单元,似斑状中—粗粒黑云母二长花岗岩;23.胭脂坝/懒板凳岩体田湾单元,中—细粒黑云母二长花岗岩;24.懒板凳岩体小水河单元,细粒黑云母二长花岗岩;25.懒板凳岩体九间屋单元,似斑状中—粗粒黑云二长花岗岩;26.东江口岩体小川街单元,中—细粒黑云角闪石英二长岩;27.东江口岩体六里街单元,似斑状中—粗粒黑云母二长花岗岩;28.花岗伟晶岩脉;29.花岗细晶岩脉;30.伟晶岩脉;31.石英脉;32.闪长岩脉;33.角岩化带;34.矽卡岩化带;35.断层;36.韧性剪切带;37.钨/钼矿;38.钒/铜矿;39.金/铁矿;40.银/镍矿;41.铅锌/锡矿;42.岩浆岩采样位置;43.钨钼矿石采样位置;44.王家坪隐伏岩体位置;F1-山阳—凤镇断裂;F2-小川街—梅花店断裂;F3-三官庙—鱼洞峡断裂;F4-镇安—板岩镇断裂;F5-仁河口—公馆断裂;F6-太山庙—丝铺推覆断裂;F7-江口断裂;F8-旬阳坝—五间房断裂;F9-长坪—胭脂坝断裂;F10-六里街断裂;F11-黄金美断裂;F12-东川河断裂;F13-杨沟断裂;F14-小磨岭断裂;F15-杨木沟断裂

Fig.1   Mineral geological map of W-Mo polymetallic ore concentration area in western Zhen’an (modified after Yang et al.,2018


2 矿集区构造—蚀变—矿化特征

2.1 核桃坪铍钨矿

核桃坪铍钨矿床主要赋矿地层岩性为白龙洞组和两岔口组灰岩、片岩,矿区NW走向的F2正断层控制着主要铍钨矿体的产出,区内岩浆岩不发育,但矿区西南部发育有王家坪隐伏花岗岩体(图1)。核桃坪矿区已发现近平行分布的NW走向矿(化)体11个,以层状和似层状矽卡岩型为主,近EW和近SN向含矿石英脉和方解石脉型次之。F2断裂带两侧发育明显的断控矽卡岩化蚀变矿化分带[图2(a)],断裂带内及附近蚀变矿化强烈,向两侧围岩蚀变矿化逐渐减弱,热液蚀变现象和热液脉体的广泛发育,表明矿区深部存在岩浆—热液事件,可能与矿区西南部王家坪隐伏岩体有一定的成因联系。

图2

图2   镇安西部钨钼矿集区构造—蚀变—矿化特征

①-含钨矿硅化大理岩;②-稠密浸染状钨矿化矽卡岩;③-灰色结晶大理岩;④-浸染状钨矿化矽卡岩;⑤-钨矿化石英脉;⑥-稀疏浸染状钨矿化矽卡岩;⑦-黄褐色氧化带;Qtz-石英;Bt-黑云母;Mot-辉钼矿;Py-黄铁矿;Sch-白钨矿;Di-透辉石;Pl-斜长石;Ms-白云母;Sk-矽卡岩

Fig.2   Structure-alteration-mineralization characteristics of western Zhen’an W-Mo ore concentration area


2.2 东阳钨矿

东阳钨矿床含矿岩性以石瓮子组、白龙洞组、两岔口组碳酸盐岩和片岩为主,NWW和NE-NNE向断裂分别控制着似层状矽卡岩型白钨矿和热液脉型钨矿体的产出。此外,该矿床还发育有无规则形态的残坡积型钨矿体,矿石量约为90万t,主要是由矽卡岩型和云英岩型矿体风化垮塌后堆积形成的。矿区西部发育有懒板凳复式花岗岩体(图1),面积约占全区面积的2/5,东阳矿区懒板凳岩体与片岩热接触变质带则发育有大量角岩化热变质[图2(b),2(c)]。矿区深部钻孔资料揭示,钨矿可能与懒板凳花岗岩体有关,深部岩体的上覆碳酸盐岩中通常发育有不同厚度的矽卡岩化带和大量的矿化热液脉体。

2.3 棋盘沟钨矿

棋盘沟钨矿出露地层为灯影组和石瓮子组,岩性以碳酸盐岩和片岩为主。矿区内发育有NWW和NE向断裂及节理,后者是主要的控矿构造,矿区内暂未发现酸性岩浆岩。钨矿呈现出深部矽卡岩型和浅部石英脉+钾长石石英脉型的典型矿化(体)组合,NE-NNE向含矿热液脉体常呈群带密集发育,与围岩的接触带附近通常发育有硅灰石、透闪石和透辉石等矽卡岩化标志性矿物。棋盘沟钨矿床深部发育有大规模大理岩化灰岩和矽卡岩化大理岩,隐伏岩体及岩脉中局部可见星点状辉钼矿和黄铁矿[图2(d)~2(g)]。

2.4 杨沟—地耳沟钨钼矿

杨沟—地耳沟钨钼矿床赋矿地层岩性主要为下寒武—中奥陶统石瓮子组碳酸盐岩,发育有NE-NNE向断层和含矿热液脉体,局部地段出现含矿脉体的密集带状发育[图2(h)~2(k)]。矿区地表无岩浆岩出露,深部发现隐伏花岗岩体(图1),隐伏岩体及上覆围岩中发育有大量含矿热液脉体(图3)。矿区南部发育有桂林沟石英脉型钼矿床,其矿体(化)特征与杨沟—地耳沟类似,位于四海坪岩体边缘。上述蚀变—矿化信息表明,隐伏岩体可能为该区热液成矿提供了较充足的成矿物质和热液来源,是宁陕—镇安一带钨钼多金属矿集区内的一个构造—岩浆—热液—矿化富集区。镇安西部钨钼多金属矿集区内NE-NNE向断裂及节理裂隙截切了NW-NWW向断裂,共同构成了区内不同尺度的“井”字形构造系统,为成矿热液的运移和最终富集成矿提供了良好的构造条件。与钨钼多金属矿化具有密切时空关系的围岩蚀变和热变质类型主要有矽卡岩化、大理岩化、角岩化和云英岩化等。

图3

图3   杨沟—地耳沟钨钼矿区地质简图

1.第四系残坡积物及河流冲积物;2.下寒武—中奥陶统石瓮子组(∈1-O1-2s);3.钼矿(化)石英脉;4.钨矿(化)石英脉;5.产状;6.勘探线;7.见矿钻孔;8.坑道

Fig.3   Geological map of Yanggou-Diergou W-Mo mining area


3 样品采集及分析方法

3.1 全岩地球化学分析

为了确定上述矿集区成岩成矿时代,探究成矿物质来源,结合这些矿集区基础地质研究工作,从区内典型矿床中采集并挑选矽卡岩型、热液脉型钨钼矿石及含矿岩脉或与成矿具有密切空间关系的新鲜岩体样品(采样位置如图1所示),开展地球化学测试分析工作。采集懒板凳岩体九间屋单元样品7件,岩性为中—粗粒黑云母二长花岗岩;懒板凳岩体田湾单元样品4件,岩性为中—细粒黑云母二长花岗岩;四海坪岩体样品2件,岩性为中—细粒黑云母二长花岗岩;王家坪隐伏岩体样品5件,岩性为中—细粒黑云母二长花岗岩;花岗细晶岩脉样6件。岩浆岩主微量元素分析工作在长安大学西部矿产资源与地质工程教育部重点实验室完成。分析测试所用仪器、分析条件和详细测试分析流程详见尤敏鑫等(2017)

3.2 成岩成矿年龄分析

(1)锆石U-Pb同位素测年

采集懒板凳岩体九间屋单元中—粗粒黑云母二长花岗岩(Z1)、王家坪隐伏中—细粒黑云母二长花岗岩体(Z2)(ZK002孔深552 m处)和王家坪花岗细晶岩脉(Z3)(56ZK01孔深504~537 m)3件样品进行锆石LA-ICP-MS U-Pb同位素测年。花岗岩锆石制靶和CL照相在西北大学大陆动力学国家重点实验室完成。锆石U-Pb同位素测年工作在长安大学西部矿产资源与地质工程教育部重点实验室完成,所用仪器型号、测试条件、测试流程和后期数据分析处理方法详见栾燕等(2019)

(2)辉钼矿Re-Os同位素测年

采集棋盘沟钨矿床钨钼共生矿石和江口钼矿床矿石,挑选辉钼矿单矿物进行Re-Os同位素测年。辉钼矿Re-Os同位素测年工作在国家地质实验测试中心完成。所用仪器型号及测试流程详见阮仕琦(2019)

3.3 S同位素测试

3件黄铁矿样品和6件辉钼矿样品分别采自棋盘沟钨矿、月河坪钼矿、桂林沟钼矿、大西沟钼矿和杨沟—地耳沟钨钼矿床,挑选矿石中硫化物单矿物进行S同位素测试,测试工作在核工业北京地质研究院完成,所用仪器型号、测试条件及具体测试流程见朱玉娣(2011)

4 结果分析

4.1 主量和稀土微量元素特征

岩石主量元素和稀土微量元素分析结果见表1表2。根据表1测试结果,结合前人关于矿集区岩浆岩主量元素的相关研究成果(秦江锋,2010李雷等,2012刘茜,2013刘春花等,2014代军治等,2015韦龙猛等,2016李云涛,2016陈清敏等,2017)可知,胭脂坝、懒板凳、四海坪和王家坪隐伏岩体相对富硅(69.15%~78.53%,均值为73.15%)、贫铝(12.59%~16.00%,均值为14.31%)、富碱(6.18%~10.19%,均值为8.37%),多为弱过铝质钙碱性岩石,且具有较低的Mg#值(<45)和固结指数(SI)值(0.56~7.16,均值为2.96),而长英指数(FL)值(71.12~97.21,均值为86.67)较高。以上岩浆岩主量元素含量变化特征表明,胭脂坝岩体、懒板凳岩体、四海坪岩体、王家坪隐伏岩体和花岗质岩脉经历了较高程度的岩浆分离结晶作用,特别是懒板凳岩体、王家坪隐伏岩体和花岗质岩脉,其SiO2含量更高(70.05%~78.53%,均值为73.54%),Mg#值和岩石固结指数(SI)值更低(0.56~6.11,均值为2.32),长英指数(FL)值更高(81.55~97.21,均值为88.50),表明其分离结晶演化程度更高。由表2可知,与区内其他中酸性岩浆岩相比,懒板凳岩体田湾单元、王家坪隐伏岩体和花岗质岩脉具有总稀土含量低(38.83×10-6~149.56×10-6,均值为77.32×10-6)、轻重稀土弱分馏的显著特点,同时也具有较强烈的负Eu异常(0.03~0.44,均值为0.23),呈现出低LREE/HREE值(0.88~6.98,均值为3.03)、低(La)N/(Yb)N值(0.40~7.46,均值为2.33)、低(La)N/(Sm)N值(0.52~4.30,均值为1.77)和低(Gd)N/(Yb)N值(0.55~1.37,均值为0.89)的特征,稀土元素配分曲线呈典型的“海鸥型”样式(图4)。

表1   镇安西部矿集区岩浆岩主量成分分析结果

Table 1  Analysis results of major components of magmatic rocks in western Zhen’an ore concentration area(%)

岩石类型样品编号SiO2TiO2Al2O3MnOMgOCaONa2OK2OP2O5TFe2O3LOITotal
懒板凳中—粗粒黑云母二长花岗岩DY-172.630.1613.860.060.261.403.624.720.051.361.3799.48
DY-272.470.1814.090.060.271.333.644.840.051.461.1599.54
DY-372.390.1814.260.070.281.313.694.780.051.661.0199.68
DY-472.970.2313.900.060.441.393.504.710.061.800.4399.49
DY-573.180.2213.900.070.371.413.604.500.061.770.4899.55
DY-674.250.1213.630.100.301.083.664.580.031.530.2899.55
DY-774.300.1913.500.060.631.323.514.690.041.640.60100.48
懒板凳中—细粒黑云母二长花岗岩DY-874.340.0414.190.100.060.604.684.140.011.000.3799.52
DY-974.080.0514.260.080.110.263.625.570.010.830.6599.52
PM9-174.690.0913.660.030.091.143.594.510.020.780.9699.56
PM9-374.050.1714.080.040.260.943.325.380.041.390.48100.15
四海坪中—细粒黑云母二长花岗岩G10171.470.3014.760.050.431.603.724.370.091.930.3999.11
G10372.090.2914.810.040.421.593.714.300.081.880.3499.55
王家坪隐伏中—细粒黑云母二长花岗岩WJP-172.750.1213.930.060.181.084.104.200.051.010.9298.40
WJP-373.710.1714.410.090.281.104.123.980.061.390.6399.94
WJP-472.520.0515.170.020.080.663.486.640.060.670.5799.92
56ZK01-873.210.1414.440.050.201.224.144.210.041.050.9899.68
56ZK01-1073.070.1513.920.050.181.114.014.310.050.981.2499.07
隐伏岩体中花岗细晶岩脉56ZK01-1275.470.0714.410.090.100.724.663.960.020.760.62100.88
56ZK01-1376.020.0414.240.050.080.474.961.640.020.431.3299.27
56ZK01-1472.540.0314.920.070.060.724.285.280.020.340.9499.20
ZK501-478.530.0412.590.040.180.354.941.150.020.661.1899.68
ZK501-573.250.0514.710.050.061.555.821.030.010.692.0299.24
ZK501-675.900.0413.720.110.061.205.601.280.010.401.77100.09

注:A/CNK=(Al2O3/(CaO+Na2O+K2O)mol.);A/NK=(Al2O3/(Na2O+K2O)mol.);SI=MgO×100/(MgO+FeO+Fe2O3+Na2O+K2O)(%);FL=100(Na2O+K2O)/(Na2O+K2O+CaO)(%);Mg#=atomic Mg/(Mg+Fe)×100

新窗口打开| 下载CSV


表2   镇安西部矿集区岩浆岩稀土微量元素分析结果

Table 2  Analysis results of rare earth trace elements of magmatic rocks in western Zhen’an ore concentration area(×10-6

岩石类型样品编号YbLuLiBeScVCoNiCuZnGaRb
懒板凳中—粗粒黑云母二长花岗岩DY-11.420.21----------
DY-21.640.24----------
DY-31.530.22----------
DY-41.900.26----------
DY-51.960.28----------
DY-64.110.62----------
DY-74.570.64----------
懒板凳中—细粒黑云母二长花岗岩DY-84.910.70----------
DY-94.410.62----------
PM9-12.200.3123.854.241.396.590.420.364.4116.4014.55246.70
PM9-33.010.3956.353.533.4013.401.180.523.5332.6017.92233.79
四海坪中—细粒黑云母二长花岗岩G1012.190.3550.372.884.0822.742.000.765.2746.3519.05128.96
G1032.420.3449.952.933.4322.031.810.97.3643.5318.77119.27
王家坪隐伏中—细粒黑云母二长花岗岩WJP-14.180.6351.315.074.118.000.870.5732.9441.2124.3253.46
WJP-33.780.5190.937.114.6111.91.240.701.9844.7424.25259.97
WJP-45.550.7935.956.022.94.80.290.1479.1815.9224.32355.47
56ZK01-82.050.2755.326.242.729.220.770.397.0433.4920.65234.35
56ZK01-103.410.4645.895.732.719.030.700.6313.3734.1220.6245.16
隐伏岩体中花岗细晶岩脉56ZK01-1214.191.935.917.88.535.120.100.53-33.0225.76305.37
56ZK01-133.690.545.415.784.443.630.060.12-26.0429.6105.1
56ZK01-144.600.625.519.443.002.460.090.11-3.2425.04305.67
ZK501-43.830.547.797.402.862.930.130.12-773.5226.7046.78
ZK501-54.060.565.0027.452.264.120.220.19-3.3132.4437.94
ZK501-64.070.534.7413.372.503.310.140.17-3.0129.3257.58
岩石类型样品编号SrBaYZrHfNbTaCsPbThU
懒板凳中—粗粒黑云母二长花岗岩DY-1-554.3017.14133.564.7919.922.068.8130.6325.126.44
DY-2-563.2818.15147.365.8523.932.5010.6031.4424.8510.40
DY-3-579.4617.13132.895.0423.342.579.1330.6823.736.38
DY-4-577.8322.68138.354.8924.922.3710.6028.6927.245.02
DY-5-599.1623.53154.185.3522.602.109.5429.5324.003.82
DY-6-328.3541.10222.648.9142.564.446.8040.4122.374.05
DY-7-489.8943.91162.356.5624.542.6410.7029.3425.3012.50
懒板凳中—细粒黑云母二长花岗岩DY-8-51.8335.9490.538.9470.1311.906.4845.3513.625.12
DY-9-133.3832.4372.056.9874.4410.3011.544.4312.614.38
PM9-186.44161.9821.0346.901.7311.841.819.9326.0612.504.91
PM9-368.1789.6826.93126.304.3216.312.707.1631.6916.314.97
四海坪中—细粒黑云母二长花岗岩G101257.89865.9320.45189.265.5414.951.962.8927.6013.403.32
G103239.38815.0520.21180.855.6314.641.972.7726.4212.603.97
王家坪隐伏中—细粒黑云母二长花岗岩WJP-1102.34174.2535.0379.863.5927.043.308.5636.0516.6016.40
WJP-396.85169.6228.4679.503.6133.756.5614.3430.2515.0935.55
WJP-426.8315.7445.0443.563.2724.303.6815.0747.9517.6121.18
56ZK01-8135.45287.7620.1181.613.2419.834.038.6832.1310.808.60
56ZK01-10108.57214.3436.8679.223.1824.002.989.1834.7317.4914.45
隐伏岩体中花岗细晶岩脉56ZK01-1220.3913.41123.92164.1312.83181.5920.679.1136.9750.2966.72
56ZK01-1315.535.4429.5427.804.4578.5714.513.9517.485.6814.99
56ZK01-1428.4527.832.5932.593.5636.218.417.5433.478.7837.78
ZK501-4201.2622.032.6824.643.9569.9018.773.1714.186.0713.23
ZK501-5494.6611.3936.9030.574.91120.639.532.326.9812.7141.83
ZK501-6633.6025.2326.7124.984.1970.4121.732.9815.217.0722.69

注:δEu=EuN/[(SmN+GdN)×0.5];δCe=CeN/[(LaN+PrN)×0.5]

新窗口打开| 下载CSV


图4

图4   镇安西部钨钼矿集区主要岩体稀土元素配分曲线和微量元素蛛网图

注:稀土元素标准化值据McDonough(1989);原始地幔标准化值据McDonough et al.(1995)

Fig.4   REE distribution curves and trace elements spider diagram of complex massif in western Zhen’an W-Mo ore

concentration area


4.2 岩浆岩锆石U-Pb同位素测年

本次岩浆岩锆石U-Pb同位素测年结果见表3。懒板凳岩体九间屋单元中—粗粒黑云母二长花岗岩锆石主要呈柱状和杆状,环带较清晰[图5(a)],测年数据处理后得到谐和曲线年龄为(222.7±2.6)Ma(MSWD=0.33),加权年龄为(222.7±2.3)Ma(MSWD=1.3)[图6(a)]。王家坪隐伏黑云母二长花岗岩锆石主要呈柱状和板状,环带同样较为清晰[图5(b)],14个数据点拟合的谐和曲线年龄为(201.6±4.7)Ma(MSWD=0.39),加权年龄为(201.9±1.8)Ma(MSWD=0.39)[图6(b)]。花岗细晶岩脉锆石晶型相对较差,呈半自形—他形,锆石环带不明显[图5(c)],14个数据点拟合的谐和曲线年龄为(199±16)Ma(MSWD=2.3),加权年龄为(208.7±4.4)Ma[图6(c)]。花岗细晶岩脉中锆石Th元素含量在531.93×10-6~9 034.62×10-6之间,U元素含量在5 909.64×10-6~11 943.38×10-6之间,Th/U值在0.07~0.76之间,平均值为0.23,具有高温热液成因锆石的特点(Hoskin,2005)[图6(d)]。高温热液锆石通常形成于岩浆系统向热液系统过渡的晚期(约600 ℃向300 ℃环境过渡),其锆石同位素体系可能受后期热液作用扰动。

表3   懒板凳九间屋单元、王家坪隐伏岩体和花岗细晶岩脉锆石U-Pb同位素测年数据

Table 3  Zircon U-Pb isotopic dating data of Jiujianwu unit,Wangjiaping concealed rock mass and granitic fine-grained dike

点号Z1(中—粗粒黑云母二长花岗岩)测年数据
Th(×10-6U/(×10-6Th/U比值207Pb/235U比值1σ206Pb/238U比值1σ207Pb/235U年龄/Ma1σ206Pb/238U年龄/Ma1σ
11 7203 7830.450.252350.004980.034770.0004322842203
21 7742 4750.680.238460.005230.034810.0005221742213
32 7144 4170.600.248750.005200.034740.0005222642203
41 6052 6180.610.249820.006350.035990.0004222652283
51 3753 3820.410.246840.005840.035610.0004922452263
61 2992 1210.600.241990.006630.034410.0004822052183
72 0633 1490.650.250700.005760.034710.0004622752203
81 1082 3140.470.242050.006210.035580.0005522052253
92 0722 6940.770.244920.006330.035580.0005722252254
101 5562 4250.630.230490.006120.034530.0006021152194
112 1413 2440.650.246270.005880.034780.0008322452205
121 8532 8560.630.253150.005540.035910.0005022942273
点号Z2(中—细粒黑云母二长花岗岩)测年数据
Th(×10-6U/(×10-6Th/U比值207Pb/235U比值1σ206Pb/238U比值1σ207Pb/235U年龄/Ma1σ206Pb/238U年龄/Ma1σ
16941 2780.520.218040.007600.031050.0007120061974
24251 5730.250.232760.008190.031620.0006921272014
37053 6400.200.235650.007010.031540.0008821562006
43151 5490.180.245680.008970.032540.0006222372064
55929410.540.227700.009860.030900.0012220881968
64961 0450.420.232210.011500.032160.0006421292044
72155200.350.237580.013620.031920.00067216112034
83595970.420.207680.017380.031990.002291921520314
94521 1390.350.225630.010470.031920.0006620792034
107941 3010.580.243990.011890.031710.00062222102014
115431 5120.340.250670.010510.032520.0006422792064
126381 6230.400.223690.011440.031350.00184205919912
131 4836 7520.240.239490.010250.032230.0009821882056
144199420.580.203940.030650.031820.001981882620212
点号Z3(花岗细晶岩脉)测年数据
Th(×10-6U/(×10-6Th/U比值207Pb/235U比值1σ206Pb/238U比值1σ207Pb/235U年龄/Ma1σ206Pb/238U年龄/Ma1σ
11 36510 5040.130.253590.009740.033100.0005922982104
29 03511 9430.760.226890.009490.030750.0010220881956
31 0858 2120.130.233070.007110.030760.0004721361953
46378 3910.080.235340.007200.034560.0005021562193
55545 9100.090.246450.007420.033820.0005922462144
61 3837 6100.180.238760.008500.032870.0005521772093
75327 8510.070.227770.008080.033920.0005420872153
82 1576 4720.330.219200.007610.031740.0006720162014
91 73310 9620.160.251860.009360.033570.0006422882134
103 6977 2350.510.245470.008390.032910.0005322372093
111 84810 4590.180.248410.007290.033180.0005122562103
126786 7460.100.239980.009060.033620.0007221872135
132 4619 0450.270.214870.007270.031100.0006119861974
141 1046 3660.170.251120.008540.033550.0006022772134

新窗口打开| 下载CSV


图5

图5   懒板凳岩体九间屋单元(a)、王家坪隐伏岩体(b)和花岗细晶岩脉(c)单颗粒锆石阴极发光图像

Fig.5   The CL images of single-particle zircons from Jiujianwu unit of Lanbandeng rock mass(a),Wangjiaping concealed rock mass(b) and granitic fine-grained dike(c)


图6

图6   懒板凳岩体九间屋单元(a)、王家坪隐伏岩体(b)和花岗细晶岩脉(c)锆石U-Pb谐和图及花岗细晶岩脉锆石稀土元素配分曲线图(d)

注:稀土元素标准化值据McDonough(1989);岩浆和热液锆石稀土元素数据据Hoskin(2005)

Fig.6   Zircon U-Pb harmonic map of Jiujianwu unit of Lanbondeng rock mass(a),Wangjiaping concealed rock mass(b) and granite-fine grained dike(c),zircon REE distribution curves of granite-fine grained dike(d)


4.3 硫同位素

大西沟钼矿辉钼矿δ34S值接近于0,具有深源硫的特征(Ohmoto,1986)。棋盘沟、月河坪、桂林沟和杨沟—地耳沟钨钼矿床δ34S值在3.6‰~10.2‰之间,分布在花岗岩δ34S值范围内(表4图7),表明成矿物质主要来自于酸性岩浆岩。

表4   镇安西部矿集区钨钼矿床S同位素组成

Table 4  Sulfur isotope composition of W-Mo deposits in western Zhen’an ore concentration area

矿区样品编号样品名称矿物δ34S/‰
棋盘沟QP-1含矿石英脉黄铁矿10.0
QP-2含矿石英脉黄铁矿10.2
QP-3含矿石英脉黄铁矿8.8
月河坪D190830含矿矽卡岩辉钼矿6.1
桂林沟D190814-1含矿伟晶岩辉钼矿4.0
D190814-2含矿石英脉辉钼矿3.6
D190814-3含矿石英脉辉钼矿4.3
大西沟D190819含矿花岗斑岩辉钼矿0.1
杨沟—地耳沟LPD1ZK06含矿石英脉辉钼矿7.1

新窗口打开| 下载CSV


图7

图7   镇安西部矿集区钨钼矿床S同位素组成特征(底图据Hoefs,2009

1.含矿花岗斑岩;2.石英脉型矿化;3.矽卡岩型矿化;4.伟晶岩型矿化

Fig.7   Characteristics of sulfur isotope composition of W-Mo deposits in western Zhen’an ore concentration area(base map after Hoefs,2009


4.4 辉钼矿Re-Os同位素年龄

镇安西部矿集区棋盘沟钨矿和江口钼矿床辉钼矿Re-Os同位素测年结果见表5,棋盘沟钨矿床共生辉钼矿(QP-02)和江口钼矿床辉钼矿的模式年龄分别为(199.7±3.9)Ma和(198.7±3.9)Ma,二者年龄基本一致。

表5   辉钼矿Re-Os同位素测年结果

Table 5  Re-Os isotope dating results of molybdenite

样品编号样重/gRe/(×10-9Os/(×10-9Re187/(×10-9Os187/(×10-9模式年龄/Ma
测定值不确定度测定值不确定度测定值不确定度测定值不确定度测定值不确定度
QP-020.00531187 6301 1913.1810.355117 929749393.06.1199.73.9
JK-010.0052117 0571080.28920.0323107216835.550.56198.73.9

新窗口打开| 下载CSV


5 讨论

5.1 镇安西部钨钼矿集区复式岩体演化规律

镇安西部复式岩体中发育较晚期的中—细粒黑云母二长花岗岩,主要矿物含量以斜长石(15%~45%)、钾长石(40%~55%)、石英(20%~25%)和黑云母(3%~5%)为主,呈中—细粒花岗结构,以带状、脉状或隐伏岩株状侵入,总体表现为具有富硅、低Mg#值、轻重稀土弱分馏以及强负Eu异常特征的高分异演化花岗岩,属钙碱性准铝—弱过铝质I型壳幔混源花岗岩,目前大部分呈隐伏状未出露至地表。晚古生代扬子板块和华北板块碰撞并发生部分熔融作用,形成了早中生代的中酸性岩浆岩类(220~250 Ma)。随后秦岭造山带的构造体制由挤压向伸展转换,并致加厚下地壳垮塌和地壳减薄,形成晚三叠世酸性岩浆岩(190~220 Ma)(刘春花等,2014张贺,2017)。复式岩体在长期的上升侵位演化过程中,少部分(前端岩体)形成于以挤压为主的同碰撞构造环境中,在此过程中形成诸多NE-NNE向张扭性断裂及近SN向张裂隙。随着陆陆碰撞造山的结束,构造体制发生转换,南秦岭进入陆内造山阶段,大部分岩体(后端岩体)可能沿早期构造通道和后期NE-NNE向张性构造侵位(190~220 Ma)。王家坪隐伏岩体为矿集区内的高分异岩浆岩,常与长英质伟晶岩脉相伴产出(Dill,2015)。矿集区内高分异岩浆岩大部分位于板内构造环境中,而高分异演化花岗岩主要形成于后造山环境下的伸展构造中,长距离运移为高分异演化岩浆岩的形成提供了必要的时空条件(吴福元等,2017)。

矿集区酸性岩浆岩Nb/Ta值(4.75~13.77)小于或接近于地壳而小于地幔,表明岩浆源于地壳并混染了地幔物质。东江口、胭脂坝和四海坪岩体的Zr/Hf值(34.52~39.51)大于地幔而接近地壳,而懒板凳岩体、王家坪隐伏岩体和花岗细晶岩脉的Zr/Hf值(7.77~26.53)均小于地幔和地壳平均值,表明其经历了较高程度的分异结晶作用。除了懒板凳岩体、王家坪隐伏岩体Rb/Sr值(0.08~5.48)大于上地幔的Rb/Sr值(0.034)外,其余岩体Rb/Sr值均与地壳的Rb/Sr值(0.35)接近,也表明懒板凳岩体和王家坪隐伏岩体分异结晶程度较高。

5.2 岩浆—成矿时空关系

(1)岩浆—成矿时间关系

前人研究表明,南秦岭中酸性岩体的侵入时代主要集中在190~233 Ma之间(Jiang et al.,2010;骆金诚等,2010;秦江锋,2010刘树文等,2011Yang et al.,2012孟旭阳等,2013),结合本次岩浆岩锆石U-Pb同位素测年结果,并统计分析镇安西部钨钼多金属矿集区内复式岩体的35个锆石U-Pb同位素年龄和黑云母40Ar-39Ar同位素年龄(孙卫东等,2000杨恺等,2009弓虎军等,2009秦江锋,2010Jiang et al.,2010刘树文等,2011Yang et al.,2011Dong et al.,2011李雷等,2012刘茜,2013Ping et al.,2013张红等,2015韦龙猛等,2016陈清敏等,2017),岩体主要形成于230~210 Ma,属于晚三叠世,而晚三叠世末期(210~200 Ma)岩浆活动减弱,并在早侏罗世初期(200~190 Ma)又发生了较为强烈的岩浆侵入活动(图8)。复式岩体中形成于不同阶段的岩体往往具有不同的岩相学特征,既有先导性岩体也有继发性岩体,岩浆演化分异晚期的继发性成矿岩体大多数为隐伏岩体,如王家坪隐伏黑云母二长花岗岩。与我国华南石英脉型和矽卡岩型钨钼矿床有关的燕山期酸性侵入体大多也具有多期次多阶段活动的特点,应是同源岩浆在同一造山幕中几次间歇性活动的结果,而成矿作用可能仅与其中一期有关。岩浆的间歇活动导致岩浆期后含矿热水溶液在沿张性构造上升过程中,挥发分因温度和压力等条件的变化而逐渐逸失,并导致成矿物质沉淀。

图8

图8   镇安西部钨钼矿集区岩体年龄和钨钼成矿年龄对比

Fig.8   Comparison of rock mass age and W-Mo metallogenic age in western Zhen’an W-Mo ore concentration area


结合本次辉钼矿Re-Os同位素测年结果,矿集区内钨钼矿成矿年龄主要集中在200~190 Ma(李双庆等,2010刘茜,2013代军治等,2015张红等,2015Dai et al.,2018),为早侏罗世,比中酸性复式岩体的主成岩年龄晚10~30 Ma,而与晚期岩浆活动(200~190 Ma)时代一致(图8)。岩浆演化分异晚期酸性侵入体应是钨钼成矿母岩,以王家坪隐伏黑云母二长花岗岩[(201.9±1.8)Ma]为典型代表。

(2)空间关系

镇安西部钨钼多金属矿集区内矽卡岩型和石英脉型钨钼矿(化)体主要分布在懒板凳岩体和王家坪隐伏岩体所在的NE-NNE向和NW-NWW向构造交叉区及其周边,表明钨钼多金属矿化与懒板凳岩体和王家坪隐伏岩体在空间上具有紧密联系(图1)。东阳钨矿和棋盘沟钨矿床的大量钻孔资料表明,矿床深部发育有矽卡岩型和矽卡岩化大理岩型矿化,中部发育有矽卡岩型和少量石英脉型钨钼矿化,浅部则发育有大脉+密集细脉型钨钼矿(化)体。东阳矿区西部地表发育有懒板凳岩体,深部钻孔也有揭露岩体;棋盘沟矿区地表无岩浆岩出露,深部钻孔也未揭露岩体。然而,东阳矿区总体标高大于棋盘沟矿区,因此推测懒板凳岩体的继发性成矿岩体可能有少数出露地表,大部分仍呈隐伏状。长石石英脉通常形成于岩浆向热液过渡演化的过程中,即形成于岩浆晚期不断分异过程中,为浆液过渡态流体的高度演化产物(祝新友等,2013),因此,棋盘沟钨矿床矿硐中含矿长石石英伟晶岩脉的发育暗示着矿区深部赋存有隐伏成矿岩体。杨沟—地耳沟矿区西北部和东南部密集脉型钨钼矿(化)体的走向为NE-NNE向,倾向分别为SE向和NW向,暗示着深部存在成矿隐伏岩体(图9),具有明显的“上脉下体”的矿化特征。与杨沟—地耳沟矿区相似的桂林沟钼矿床同样在地层及四海坪岩体中发育有多组走向的密集脉型钼矿化,呈扇形或环形,应是深部隐伏成矿岩体(继发性成矿岩体)岩浆、应力、热力和热液共同作用的结果。

图9

图9   杨沟—地耳沟钨钼矿区深部隐伏成矿岩体示意图

1.第四系残坡积物;2.大理岩;3.白云质大理岩;4.萤石矿化;5.辉钼矿(化)体;6.白钨矿(化)体;7.石英脉;8.隐伏黑云母二长花岗岩体;9.长石石英伟晶岩脉;10.产状

Fig.9   Schematic diagram of deep concealed ore-forming rock mass in Yanggou-Diergou W-Mo mining area


5.3 钨钼成矿物质来源

大量研究表明,钨钼矿化与岩浆活动具有密切的成因联系,世界上主要钨钼矿床的成矿物质来源以地幔、深部岩浆和中酸性岩体为主(李水如等,2007石洪召等,2009),钨钼成矿物质的岩浆源观点已被诸多学者所认可(刘建平等,2007赵辛敏等,2015)。壳幔强烈相互作用的不断进行,会造成地壳中金属元素的不断富集,高度演化分异的中酸性岩浆岩是钨钼等金属元素成矿作用产生的重要组成部分之一(Breiter,2012)。同时,中酸性岩浆在沿深大断裂上升演化的过程中也可不断对金属元素富集的含矿地层进行重熔和淋滤,导致岩浆热液中金属元素含量的升高(毛景文,1997)。酸性岩浆系统在演化过程中会产生大量的流体,促进金属元素的迁移和富集(Kovalenko et al.,1984),富含金属元素的成矿热液在迁移过程中与围岩发生一系列水岩反应,最终在一定的构造物理化学条件下富集成矿(Zhao et al.,2005)。钨钼成矿流体主要来源于岩浆演化过程,我国华南地区大规模钨钼锡等多金属矿集区中的成矿花岗岩是富含钨钼锡等成矿元素结晶基底经长期构造—流体“熔炼”作用而演化形成的(翟裕生,2002),南岭钨多金属成矿带形成于中生代岩石圈伸展构造背景下,且成矿物质具有地幔来源的特征(聂荣锋等,2007)。

无论是I型、S型花岗岩还是I-S型花岗岩,均可能成为矽卡岩型白钨矿的成矿母岩。钨矿的成矿岩体具有相似的地球化学特征,总体富含硅、铝和碱质,岩石SiO2含量一般为73%~75%,为超酸性岩石,长英指数(分异指数)通常在82~95之间,岩浆分异结晶程度较高,大多为铝过饱和钙碱性系列岩石,富含挥发分,属于高分异演化花岗岩(熊欣等,2015)。复式岩体晚阶段的岩浆演化容易引起硅质、碱质、挥发分、不相容元素和金属元素的富集与成矿(毛景文等,2000赵辛敏等,2015),且往往具有钨、锡、铌、钽、锂等成矿专属性,尤以我国华南燕山期高分异演化钨锡多金属成矿岩体最为显著。镇安西部钨钼多金属矿集区内中酸性复式侵入岩体中懒板凳岩体、王家坪隐伏岩体和花岗质岩脉均富硅,具有较低的固结指数(SI)和较高的长英指数(FL),岩石分离结晶作用程度相对较高。懒板凳岩体田湾单元、王家坪隐伏岩体和花岗质岩脉富集大离子亲石元素(Rb、Th、U、Nb、Ta、Nd等),亏损Ba和Sr等,具有低Sr/Y值,与后期流体作用关系密切(姚军明等,2005)。岩浆岩稀土元素的四分组效应一般会导致Zr/Hf值和Nb/Ta值降低,Rb/Sr值升高。懒板凳岩体田湾单元、王家坪隐伏岩体和花岗质岩脉的Zr/Hf值在7.77~26.53之间,Nb/Ta值在 3.05~8.79之间(均值为6.01),Rb/Sr值为0.08~14.97(均值为3.97),以上微量元素比值的变化是高分异演化岩浆岩的典型标志(Raimbaulti et al.,1998)。

大量研究资料表明,高分异演化钨钼成矿花岗岩具有较低的稀土总量,主要集中在50×10-6~200×10-6之间,石英脉型钨矿成矿岩体稀土元素配分曲线通常呈“海鸥式”(稀土四分组效应),轻重稀土分馏不明显,且均具有非常强烈的Eu负异常,δEu主要集中在0.007~0.900之间,表明成矿条件为较高温的还原环境。

矽卡岩型钨矿成矿岩体稀土含量多数受到侵入岩和被交代地层的双重控制,而石英脉型钨矿成矿岩体的稀土含量与岩浆热液的结晶分异过程密切相关,分异越彻底,Eu的亏损程度越高。由于Eu2+与Ca2+的类质同象,成矿岩体强烈的负Eu异常通常伴生有矿床中长石石英脉的大量产出(薛怀民等,2009秦燕等,2019)。矿集区内懒板凳岩体田湾单元、王家坪隐伏岩体和花岗质岩脉均具有很低的稀土总量,显著的负Eu异常,轻重稀土分馏不明显,稀土配分曲线呈显著的四分组效应。

Sr同位素研究成果表明,核桃坪钨矿床氧化物早阶段和晚阶段白钨矿的87Sr/86Sr值分别为0.709和0.710~0.712,表明早阶段成矿物质可能来源于深部隐伏花岗岩体,而晚期成矿物质则因岩浆分异和水岩反应作用,加入了更多的壳源物质(代鸿章等,2019);东阳矿区懒板凳黑云母二长花岗岩[(200±1.9)Ma]可能是由地壳重熔或幔源岩浆演化而成(刘茜,2013)。矿集区内钨钼多金属成矿作用与复式岩体的晚阶段高分异演化花岗岩(多数为隐伏岩体)、岩浆晚期热液活动等具有密切的成因联系,深部成矿岩浆在应力和热力等作用下沿断裂裂隙系统向浅部运移,并在岩浆的不断分异演化过程中,发生强烈的水岩反应和成矿热液中钨钼等金属元素的富集成矿,因此懒板凳岩体和王家坪隐伏岩体一带仍具有较大的钨钼成矿和找矿潜力。

6 结论

(1)复式岩体中的懒板凳岩体田湾单元、王家坪隐伏岩体和花岗质岩脉具有富硅,稀土总量低,呈强负Eu异常,稀土元素配分曲线具有显著的四分组效应,且Zr/Hf值和Nb/Ta值较低,Rb/Sr值较高,岩浆结晶分异程度相对较高,代表了本区岩浆演化方向,属于钙碱性准铝—弱过铝质I型壳幔混源花岗岩类。

(2)锆石U-Pb同位素测年获得懒板凳岩体九间屋单元和王家坪隐伏岩体年龄分别为222.7 Ma和201.9 Ma,棋盘沟钨矿和江口钼矿的辉钼矿Re-Os同位素模式年龄分别为(199.7±3.9)Ma和(198.7±3.9)Ma。矿集区内岩浆岩形成时代主要集中在230~210 Ma和200~190 Ma 2个阶段,钨钼矿床成矿年龄集中在200~190 Ma之间,较晚期的王家坪隐伏岩体成岩时代与钨钼成矿时代接近。

(3)石英脉型和矽卡岩型钨钼矿床中硫化物单矿物δ34S范围为0.1‰~10.2‰,钨钼成矿物质来源应为复式岩体晚阶段形成于200~190 Ma之间的高分异演化酸性侵入体,以懒板凳岩体田湾单元、王家坪隐伏岩体和花岗质岩脉为代表。隐伏高分异演化黑云母二长花岗岩及岩脉发育地段将是矿集区内钨钼多金属矿(化)体的有利找矿靶区。

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-1-13.shtml

参考文献

Breiter K2012.

Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Kruné hory/Erzgebirge Mts.,Central Europe

[J].Lithos,151105-121.

[本文引用: 1]

Chen QingminGuo QimingWang Qianget al2017.

Zircon U-Pb dating and geochemical characteristics of Sihaiping pluton from southern Qinling orogenic belt in Shaanxi

[J].Northwestern Geology,503):65-73.

Dai H ZWang D HWang C Het al2018.

Re-Os isotopic dating of a W-Be polymetallic deposit in the southern Qinling region,China

[J].Acta Geologica Sinica,921):414-415.

[本文引用: 1]

Dai HongzhangWang DenghongLiu Lijunet al2019.

Metallogenic epoch and metallogenic model of the Hetaoping W- Be deposit in Zhen’an County,South Qinling

[J].Acta Geologica Sinica,936):1342-1358.

Dai JunzhiYu KangpingWang Ruitinget al2015.

Geological characteristics,Re-Os geochronology of Xinpu molybdenum deposit in Ningshan,southern Qinling and its implications

[J].Acta Petrologica Sinica,311):189-199.

Dill H G2015.

Pegmatites and aplites:Their genetic and applied ore geology

[J].Ore Geology Reviews,69417-561.

[本文引用: 1]

Dong Y PZhang G WNeubauer Fet al2011.

Tectonic evolution of the Qinling orogen,China:Review and synthesis

[J].Journal of Asian Earth Sciences,413):213-237.

[本文引用: 1]

Gong HujunZhu LaiminSun Boyaet al2009.

Zircon U-Pb ages and Hf isotope characteristics and their geological significance of the Shahewan,Caoping and Zhashui granitic plutons in the South Qinling orogen

[J].Acta Petrologica Sinica,252):248-264.

Hoefs J2009.Stable Isotope Geochemistry[M].BerlinSprin-ger.

[本文引用: 2]

Hoskin P W O2005.

Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia

[J].Geochimica et Cosmochimica Acta,693):637-648.

[本文引用: 2]

Jiang Y HJin G DLiao S Yet al2010.

Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen,central China:Implications for a continental arc to continent-continent collision

[J].Lithos,117(1/2/3/4):183-197.

[本文引用: 2]

Kovalenko V IKovalenko N I1984.

Problems of the origin,ore-bearing and evolution of rare-metal granitoids

[J].Ph-ysics of the Earth and Planetary Interiors,351/2/3):51-62.

[本文引用: 1]

Li LeiZhang ChengliZhou Yinget al2012.

Early Mesozoic crust- and mantle-derived magmatic mixing in the Qinling orogeny:Evidence from geochemistry of mafic microgranular enclaves in the Dongjiangkou pluton

[J].Geological Jo-urnal of China Universities,182):291-306.

Li ShuangqingYang XiaoyongQu Wenjunet al2010.

Molybdenite Re-Os age and metallogeny of the Yueheping skarnmolybdenum deposit in Ningshan, southern Qinling

[J].Acta Petrologica Sinica,265):1479-1486.

Li ShuiruWei JunhaoDeng Junet al2007.

Ore types of tungsten poly-metallic deposits and prospecting indications

[J].China Tungsten Industry,226):19-24.

Li Yuntao2016.

Geological Characteristics and Metallogenesis of Taishanmiao Gold Deposit, Ningshan County

[D].Xi’anChang’an University.

Liu ChunhuaWu CailaiGao Yuanhonget al2014.

Zircon LA-ICP-MS U-Pb dating and Lu-Hf isotopic system of Dongjiangkou,Zhashui and Liyuantang granitoid intrusions,South Qinling belt, central China

[J].Acta Petrologica Sinica,308):2402-2420.

Liu JianpingTeng Jiande2007.

Research on mineralization stages of Dajishan deposit zone in Jiangxi Province

[J]. Nonferrous Metals(Mining Section),593):16-19.

Liu Qian2013.

The Characteristics and Genes’s of the Zhen’an W deposit,ShaanXi Province,China

[D].BeijingChina University of Geosciences(Beijing).

Liu ShuwenYang PengtaoLi Qiugenet al2011.

Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen, China

[J]. Journal of Jilin University(Earth Science Edition),416):1928-1943.

Luan YanHe KeTan Xijuan2019.

In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS

[J].Geological Bulletin of China,387):1206-1218.

Mao GuilaiYan ShengwuLi Yanlin2012.

Researches on Indosinian granites and mineralization in South Qinling

[J].Geology of Shaanxi,302):46-55.

Mao Jingwen1997.

Metallogenic speciality of super giantpolymetallic tungsten deposit:Taking the Shizhuyuan deposit as an example

[J].Scientia Geologica Sinica,323):351-363.

Mao JingwenYang JianminZhang Zuohenget al2000.

The study on petrology, mineralogy and geochemistry of tungsten-bearing granitic rocks in the Yeniutan,Subei County,Gansu Province

[J].Acta Geologica Sinica,742):142-155.

McDonough S1989.

Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes

[J].Geological Society London Special Publications,421):313-345.

[本文引用: 2]

McDonough W FSun S S1995.

The composition of the earth

[J].Chemical Geology,120223-253.

[本文引用: 1]

Meng XuyangWang XiaoxiaKe Changhuiet al2013.

LA-ICP-MS zircon U-Pb age, geochemistry and Hf isotope of the granitoids from Huayang pluton in South Qinling orogen:Constraints on the genesis of Wulong plutons

[J].Ge-ological Bulletin of China,3211):1704-1719.

Nie RongfengWang Xudong2007.

On research advancement of southern Jiangxi’s tungsten deposits

[J]. China Tungsten Industry,223):1-5.

Ohmoto H1986.

Stable isotope geochemistry of ore deposits

[J]. Reviews in Mineralogy and Geochemistry, 161):491-559.

[本文引用: 1]

Ping X QZheng J PZhao J Het al2013.

Heterogeneous sources of the Triassic granitoid plutons in the southern Qinling orogen:An E‐W tectonic division in central China

[J].Tectonics,323):396-416.

[本文引用: 1]

Qin Jiangfeng2010.

Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt

[D].Xi’anNorthwest University.

Qin YanWang DenghongSheng Jifuet al2019.

A review of research achievements on REE geochemistry of tungsten deposits in China

[J].Geology in China,66):1300-1311.

Raimbaulti LBurnol L1998.

The Richemont rhyolite dyke,Massif Central,France:A subvolcanic equivalent of rare-metal granites

[J].Canadian Mineralogist,362):265-282.

[本文引用: 1]

Ruan Shiqi2019.

Tectonic and Fluid Characteristics and Genesis Model of Qipangou Tungsten Deposit in West Zhen’an, South Qinling

[D].Xi’anChang’an University.

Shi HongzhaoLin FangchengZhang Linkui2009.

Spatio-temporal distribution and current state of the research of the tungsten deposits:An overview

[J].Sedimentary Geology and Tethyan Geology,294):90-95.

Sun WeidongLi ShuguangChen Yadonget al2000.

Zircon U-Pb dating of granitoids from South Qinling,Central China and their geological significance

[J]. Geochimica,293):209-216.

Wang JiemingCao HongyuanDong Suqinget al2017.

Genetic discussion and geological and characteristics of geochemical of Jinpen tungsten deposit in Zhen’an,Shaanxi Province

[J].Science Technology and Engineering,1730):1-8.

Wang YizhongWang DequanJiao Hongjianet al2017.

Study on metallogenic model of Mo tungsten deposit

[J]. World Nonferrous Metals,(17):154-157.

Wei LongmengYang YizengZhang Heet al2016.

Petrogenesis of Yanzhiba granite in South Qinling:Constraints from zircon U-Pb ages, geochemistry and Sr-Nd-Pb isotope

[J].Journal of Earth Sciences and Environment,384):527-546.

Wu FuyuanLiu XiaochiJi Weiqianget al2017.

Highly fractionated granites:Recognition and research

[J].Scientia Sinica (Terrae),477):745-765.

Xiong XinXu WenyiWen Chunhua2015.

Fluid characteristics and genesis of Xianglushan skarn scheelite deposit inXiushui,Jiangxi Province

[J].Mineral Deposits,345):1046-1056.

Xue HuaiminWang YinggengMa Fanget al2009.

The Huangshan A-type granites with tetrad REE:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton?

[J].Acta Geologica Sinica,832):247-259.

Yang KaiLiu ShuwenLi Qiugenet al2009.

LA-ICP-MS zircon U-Pb geochronology and geological significance of Zhashui granitoids and Dongjiangkou granitoids from Qinling, central China

[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,455):841-847.

Yang P TLiu S WLi Q Get al2011.

Ages of the Laocheng granitoids and crustal growth in the South Qinling tectonic domain,central China:zircon U-Pb and Lu-Hf isotopic constraints

[J].Acta Geologica Sinica,854):854-869.

[本文引用: 1]

Yang P TLiu S WLi Q Get al2012.

Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith,middle segment of the south Qinling belt,central China:constraints on petrogenesis and geodynamic processes

[J].Journal of Asian Earth Sciences,6115):166-186.

[本文引用: 1]

Yang XingkeChao HuixiaRuan Shiqiet al2018.

Research report on magmatism and tungsten-molybdenum mineralization in the western ore concentration area of Zhen’an

[R].Xi’anChang’an University.

[本文引用: 1]

Yao JunmingHua RenminLin Jinfu2005.

Zircon LA-ICPMS U-Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan Province,China

[J].Acta Petrologica Sinica,213):688-696.

You MinxinZhang ZhaoweiWang Yaleiet al2017.

Zircon U-Pb age and the magma evolution process of the Huangshannan mafic-ultramafic intrusion in the East Tianshan Mountains

[J].Geology and Exploration,535):903-914.

Zhai Yusheng2002.

Some features of regional metallogeny of China

[J].Geology and Prospecting,385):1-4.

Zhang He2017.

Late Triassic magmatism and tectonic evolution of Foping Dome area in South Qinling

[D].HefeiUniversity of Science and Technology of China.

Zhang HongChen DanlingZhai Mingguoet al2015.

Molybdenite Re-Os dating and its tectonic significance of the Guilingou porphyry molybdenum deposit, southern Qinling

[J].Acta Petrologica Sinica,317):2023-2037.

Zhao K DJiang S YJiang Y Het al2005.

Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan Province,South China:implication for the genesis of granite and related tin mineralization

[J].European Journal of Mineralogy,174):635-648.

[本文引用: 1]

Zhao XinminGuo ZhoupingBai Yun2015.

Advances in study of skarn-type scheelite deposit

[J].Geological Survey of China,21):9-13.

Zhu XinyouWang JingbinWang Yanliet al2013.

Characteristics of greisen inclusions in alkali feldspar granite of Yaogangxian tungsten deposit

[J].Mineral Deposits,323):533-544.

Zhu Yudi2011.

Characteristics of Granites and Discuss on the Genesis of the Tongcun Porphyry Mo (Cu) Deposit, Kaihua, Zhejiang Province

[D].BeijingChina University of Geosciences(Beijing).

陈清敏郭岐明王强2017.

陕西南秦岭四海坪岩体锆石U-Pb年龄及地质意义

[J].西北地质,503):65-73.

[本文引用: 2]

代鸿章王登红刘丽君2019.

南秦岭镇安核桃坪钨铍矿床成矿时代及成矿模式探讨

[J].地质学报,936):1342-1358.

[本文引用: 1]

代军治鱼康平王瑞廷2015.

南秦岭宁陕地区新铺钼矿地质特征、辉钼矿Re-Os年龄及地质意义

[J].岩石学报,311):189-199.

[本文引用: 3]

弓虎军朱赖民孙博亚2009.

南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义

[J].岩石学报,252):248-264.

[本文引用: 1]

李雷张成立周莹2012.

秦岭早中生代壳幔岩浆混合作用——来自东江口花岗岩体闪长质包体的地球化学证据

[J].高校地质学报,182):291-306.

[本文引用: 2]

李双庆杨晓勇屈文俊2010.

南秦岭宁陕地区月河坪矽卡岩型钼矿Re-Os年龄和矿床学特征

[J].岩石学报,265):1479-1486.

[本文引用: 2]

李水如魏俊浩邓军2007.

广西大明山矿集区钨多金属矿床类型及控矿因素与找矿标志

[J].中国钨业,226):19-24.

[本文引用: 1]

李云涛2016.

宁陕县太山庙金矿矿床地质特征与矿床成因

[D].西安长安大学.

[本文引用: 1]

刘春花吴才来郜源红2014.

南秦岭东江口、柞水和梨园堂花岗岩类锆石LA-ICP-MS U-Pb年代学与锆石Lu-Hf同位素组成

[J].岩石学报,308):2402-2420.

[本文引用: 2]

刘建平滕建德2007.

江西大吉山矿区成矿(矿化)阶段的研究

[J].有色金属(矿山部分),593):16-19.

[本文引用: 1]

刘茜2013.

陕西镇安钨矿床特征及成因研究

[D].北京中国地质大学(北京).

[本文引用: 4]

刘树文杨朋涛李秋根2011.

秦岭中段印支期花岗质岩浆作用与造山过程

[J].吉林大学学报(地球科学版),416):1928-1943.

[本文引用: 2]

栾燕何克谭细娟2019.

LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定

[J].地质通报,387):1206-1218.

[本文引用: 1]

毛归来鄢圣武李彦林2012.

南秦岭印支期岩体与成矿研究

[J].陕西地质,302):46-55.

[本文引用: 1]

毛景文1997.

超大型钨多金属矿床成矿特殊性——以湖南柿竹园矿床为例

[J].地质科学,323):351-363.

[本文引用: 1]

毛景文杨建民张作衡2000.

甘肃肃北野牛滩含钨花岗质岩岩石学、矿物学和地球化学研究

[J].地质学报,742):142-155.

[本文引用: 1]

孟旭阳王晓霞柯昌辉2013.

南秦岭华阳花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素组成——对五龙岩体群成因的约束

[J].地质通报,3211):1704-1719.

[本文引用: 1]

聂荣锋王旭东2007.

赣南钨矿研究进展

[J].中国钨业,223):1-5.

[本文引用: 1]

秦江锋2010.

秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景

[D].西安西北大学.

[本文引用: 3]

秦燕王登红盛继福2019.

中国不同类型钨矿床稀土元素地球化学研究成果综述

[J].中国地质,66):1300-1311.

[本文引用: 1]

阮仕琦2019.

南秦岭镇安西部棋盘沟钨矿床构造和流体特征及成因模式探讨

[D].西安长安大学.

[本文引用: 1]

石洪召林方成张林奎2009.

钨矿床的时空分布及研究现状

[J].沉积与特提斯地质,294):90-95.

[本文引用: 1]

孙卫东李曙光Chen Yadong2000.

南秦岭花岗岩锆石U-Pb定年及其地质意义

[J].地球化学,293):209-216.

[本文引用: 1]

王洁明曹宏远董苏庆2017.

陕西镇安金盆钨矿床地质地球化学特征与矿床成因

[J].科学技术与工程,1730):1-8.

[本文引用: 1]

王义忠王得权焦宏剑2017.

杨泗庙—赖板凳钼钨矿成矿模式研究

[J].世界有色金属,(17):154-157.

[本文引用: 1]

韦龙猛杨一增张贺2016.

南秦岭胭脂坝花岗岩成因:锆石U-Pb年龄、地球化学和Sr-Nd-Pb同位素的制约

[J].地球科学与环境学报,384):527-546.

[本文引用: 2]

吴福元刘小驰纪伟强2017.

高分异花岗岩的识别与研究

[J].中国科学(地球科学),477):745-765.

[本文引用: 1]

熊欣徐文艺文春华2015.

江西香炉山矽卡岩型白钨矿矿床成因与流体特征

[J].矿床地质,345):1046-1056.

[本文引用: 1]

薛怀民汪应庚马芳2009.

高度演化的黄山A型花岗岩:对扬子克拉通东南部中生代岩石圈减薄的约束?

[J].地质学报,832):247-259.

[本文引用: 1]

杨恺刘树文李秋根2009.

秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义

[J].北京大学学报(自然科学版),455):841-847.

[本文引用: 1]

杨兴科晁会霞阮仕琦2018.

镇安西部矿集区岩浆作用与钨钼成矿研究报告

[R].西安长安大学.

[本文引用: 1]

姚军明华仁民林锦富2005.

湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征

[J].岩石学报,213):688-696.

[本文引用: 1]

尤敏鑫张照伟王亚磊2017.

东天山黄山南镁铁—超镁铁质岩体锆石U-Pb年龄及岩浆演化过程探讨

[J].地质与勘探,535):903-914.

[本文引用: 1]

翟裕生2002.

中国区域成矿特征探讨

[J].地质与勘探,385):1-4.

[本文引用: 1]

张贺2017.

南秦岭佛坪穹窿地区晚三叠世岩浆作用和构造演化

[D].合肥中国科学技术大学.

[本文引用: 1]

张红陈丹玲翟明国2015.

南秦岭桂林沟斑岩型钼矿Re-Os同位素年代学及其构造意义研究

[J].岩石学报,317):2023-2037.

[本文引用: 2]

赵辛敏郭周平白赟2015.

矽卡岩型白钨矿矿床研究进展

[J].中国地质调查,21):9-13.

[本文引用: 2]

朱玉娣2011.

浙江桐村斑岩钼(铜)矿床岩浆岩特征及矿床成因讨论

[D].北京中国地质大学(北京).

[本文引用: 1]

祝新友王京彬王艳丽2013.

石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例

[J].矿床地质,323):533-544.

[本文引用: 1]

/