img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2023, 31(3): 408-422 doi: 10.11872/j.issn.1005-2518.2023.03.102

矿产勘查与资源评价

柴北缘夏日达乌铌钽矿区花岗岩地球化学特征及地质意义

魏生云,1, 王建国,1, 郭学忠2, 邢佳1

1.青海大学地质工程系,青海 西宁 810016

2.西部矿业股份有限公司投资发展部,青海 西宁 810001

Geochemical Characteristics and Geological Significance of Granite in Xiaridawu Niobium-Tantalum Mining Area,Northern Margin of Qaidam Basin

WEI Shengyun,1, WANG Jianguo,1, GUO Xuezhong2, XING Jia1

1.Department of Geological Engineering, Qinghai University, Xining 810086, Qinghai, China

2.Department of Investment and Development, Western Mining Co. , Ltd. , Xining 810001, Qinghai, China

通讯作者: 王建国(1972-),男,河南平顶山人,副教授,从事成矿预测、资源勘查、地球物理及矿山安全等方面的教学和研究工作。lywjg467047@126.com

收稿日期: 2022-08-15   修回日期: 2022-12-20  

基金资助: 国家自然科学基金项目“基于微观层面分析的岩矿电阻率耦合机理及其模型:以查藏错铜铅锌矿床为例”.  42164007

Received: 2022-08-15   Revised: 2022-12-20  

作者简介 About authors

魏生云(1997-),男,青海西宁人,硕士研究生,从事成矿预测、资源勘查及地球化学等方面的研究工作wsy202205@126.com , E-mail:wsy202205@126.com

摘要

柴北缘夏日达乌铌钽矿区分布有大量早古生代花岗岩,剖析花岗岩的岩浆来源、形成机制和构造环境,对于揭示柴北缘陆壳的形成与演化机制具有重要作用。对柴北缘夏日达乌铌钽矿区花岗岩进行了岩石学和地球化学特征分析,结果表明:夏日达乌地区黑云母花岗斑岩主量元素具有高硅、高钾、富铝以及低镁、贫锰、少钛的特征;富集轻稀土元素,相对亏损重稀土元素,REE球粒陨石标准化配分曲线呈“V”字形分布,具有明显负Eu异常;相对富集大离子亲石元素,相对亏损高场强元素。岩石成因属于高分异S型过铝质花岗岩,其中物源主要由地壳物质发生低温熔融所提供,不排除地幔物质的混染;推断花岗岩形成于碰撞造山向板内过渡的碰撞构造环境。

关键词: 柴北缘 ; 夏日达乌地区 ; S型花岗岩 ; 物源分析 ; 构造背景

Abstract

The northern margin of the Qaidam Basin is located in the north of the Qaidam Basin and the south of the Qilian orogenic belt,and in the Qinling-Qilian-Kunlun orogenic belt with strong tectonic-magmatic activity.It is one of the hot areas of geological research in recent years.A large number of early Paleozoic granites are distributed in the Xiaridawu niobium-tantalum mining area in the northern margin of the Qaidam Basin.The analysis of the magma source, formation mechanism and tectonic environment of granites plays an important role in revealing the formation mechanism and tectonic environment of granites,which also plays an important role in revealing the formation and evolution mechanism of continental crust in the northern margin of the Qaidam Basin.Based on the analysis of petrological and geochemical characteristics of granites in Xiaridawu niobium-tantalum mining area on the northern margin of Qaidam Basin,the magma source,formation me-chanism and tectonic environment of granites was analized.It is found that the biotite granite porphyry in the Xiaridawu area has high silicon,high potassium and aluminum,and the other major elements show the characteristics of low magnesium and low manganese,poor phosphorus and titanium.The biotite granite porphyry is enriched in light rare earth elements,while relatively depleted in heavy rare earth elements,REE chondrite-normalized partitioning curve is ‘V’ shaped distribution,and the negative Eu anomaly is obvious.It is relatively enriched in large ion lithophile elements,relatively depleted in high field strength elements. According to the analysis of related parameters of major,trace and rare earth elements, the granite porphyry in the mining area is a highly differentiated S-type peraluminous granite. In addition to the low-temperature melting of crustal materials, the source is not excluded from the contamination of mantle materials, and there are some separated crystallization products, which has a very favorable effect on the mineralization of niobium and tantalum deposits in this area. According to the tectonic environment discrimination of multiple sets of main elements and trace elements,the granite porphyry in the Xiaridawu niobium-tantalum mining area on the northern margin of Qaidam Basin was formed in the collision tectonic environment of the transition from collision orogenic to intraplate.The study has important geological significance for understanding the genesis,provenance,tectonic environment and prospecting direction of granite in this area.

Keywords: northern margin of Qaidam ; Xiaridawu area ; S-type granite ; provenance analysis ; tectonic setting

PDF (7706KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

魏生云, 王建国, 郭学忠, 邢佳. 柴北缘夏日达乌铌钽矿区花岗岩地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(3): 408-422 doi:10.11872/j.issn.1005-2518.2023.03.102

WEI Shengyun, WANG Jianguo, GUO Xuezhong, XING Jia. Geochemical Characteristics and Geological Significance of Granite in Xiaridawu Niobium-Tantalum Mining Area,Northern Margin of Qaidam Basin[J]. Gold Science and Technology, 2023, 31(3): 408-422 doi:10.11872/j.issn.1005-2518.2023.03.102

柴北缘位于柴达木盆地以北、祁连造山带以南,地处构造—岩浆活动强烈的秦祁昆(秦岭—祁连—昆仑)造山带,是近年来地球科学研究的热点地区之一(Zhang et al.,2010张建新等,2015岳悦等,2021王秉璋等,2022)。20世纪90年代,研究人员在柴北缘地区发现了以榴辉岩为主的高压—超高压变质带(Yang et al.,1998杨经绥等,2000宋述光等,2011),引起了地质工作者对柴北缘早古生代岩浆活动及构造背景的广泛关注。早古生代花岗岩作为柴北缘高压—超高压变质岩带的基本组成部分,出露广泛,记录了柴北缘早古生代岩浆活动及变质作用程度,揭示了洋、陆壳深俯冲—碰撞过程中的岩浆响应事件及柴北缘构造带的形成与演化,保留了其形成环境、地壳分异及壳幔相互作用的重要信息,因此柴北缘分布的花岗岩已成为当前研究的重点对象。

前人对柴北缘花岗岩开展了大量的年代学、地球化学和岩石成因等方面的研究工作(Li et al.,2001吴才来等,2004贾群子等,2013张金鹏等,2022)。在岩石成因方面,由于受岩浆源区的物质组成、熔融温度、岩浆结晶分异和围岩混染等多重混合作用的影响,存在物源的不确定性,但基本可以确认除壳源物质之外,也有部分幔源物质(吴才来等,2016彭璇等,2022张金鹏等,2022)。然而,关于柴北缘花岗岩构造背景,仍存在较多争议。吴才来等(2016)推测早期花岗岩的形成与祁连岩石圈拆沉导致的欧龙布鲁克陆块北缘减薄、拉伸有关,晚期花岗岩类的形成与宗雾隆洋壳向南俯冲于欧龙布鲁克陆块之下有关。朱小辉等(2016)贺小元等(2020)认为柴达木山花岗岩岩体是由挤压至伸展等多种构造体制下多期次岩浆活动的产物。张金明等(2022)认为柴北缘胜利口东花岗岩源于古元古代地壳物质的重熔再造,形成于柴北缘高压—超高压变质带碰撞阶段。彭璇等(2022)认为柴北缘小赛什腾山片麻状花岗岩形成于后碰撞环境,其物源除中元古代的地壳物质之外,也有流体加入。因此,剖析花岗岩的岩浆来源、熔融机制和构造环境,对于揭示柴北缘陆壳的形成与演化机制具有重要作用。

选择柴北缘夏日达乌铌钽矿区花岗岩作为研究对象,通过分析区域及研究区地质特征、岩石学和地球化学特征、主微量元素及稀土元素组成,探讨花岗岩岩石成因、物质来源及构造环境。该研究有助于深化对柴北缘花岗岩成因的认识,为柴北缘花岗岩构造背景提供理论依据。

1 区域地质及岩石学特征

1.1 区域及研究区地质特征

青海省乌兰县夏日达乌铌钽矿区位于柴达木盆地东北缘,欧龙布鲁克—乌兰元古宙古陆块体的东段,大地构造位置上处于柴达木—阿尔金超高压变质杂岩带东端(徐新文,2009;吴来才等,2016;荣骁等,2022),西北部靠祁连地块,东南接拉脊山蛇绿岩/洋内盆地[图1(a)],具体位置位于托莫儿日特山阿里根刀若山南坡。研究区经历了吕梁期至喜山期多次构造运动的叠加,形成了NW向和NNW向复杂的剪切带和断裂(徐新文,2009王进寿等,2022),其中稀有金属成矿期以加里东期和印支期多旋回造山作用为主(李善平等,2018)。

图1

图1   祁连—柴达木造山带主要构造单元简图(a)和夏日达乌矿区地质简图(b)(修改自张建平,2005

1.喜山期山间断盆沉积;2.达肯大坂群;3.滩间山群;4.深灰色中细粒闪长岩;5.浅灰色中粗粒斜长花岗岩;

6.浅灰色中粗粒花岗闪长岩;7.断层;8.糜棱岩带

Fig.1   Schematic map of main tectonic units of Qilian-Qaidam orogenic belt(a) and geological map of Xiaridawu mining area(b)(modified after Zhang,2005


研究区出露地层为古元古界达肯大坂群和奥陶—志留系滩间山群[图1(b)]。达肯大坂群分布于研究区南部,呈NW-SE向,倾向NE,倾角约为50°。下岩段为浅灰色条痕状黑云斜长片麻岩,穿插花岗伟晶岩脉及细粒花岗岩,浅灰色绢云石英片岩、深灰色斜长角闪片岩;上岩段为一套角闪岩相片麻岩类,具有混合岩化作用。岩性组合为浅灰色条痕状黑云斜长片麻岩、条带状黑云斜长片麻岩及眼球状黑云斜长片麻岩互层,穿插有少量的花岗伟晶岩脉,其分布方向与片麻理一致。岩石中普遍发育碳酸盐化、钾化、角闪岩化、弱黄铁矿化和褐铁矿化。由于区域变质作用和混合岩化作用,形成长英质熔液,沿裂隙或破碎带充填。后期有细粒花岗岩(脉)沿断裂侵入,呈不规则展布(徐新文,2009潘鑫等,2019)。滩间山群呈NW向展布,严格受断裂控制,南部逆冲于达肯大板群之上。下岩段岩层发育有一套以灰绿色斜长角闪片岩、糜棱岩及灰斜长角闪片麻岩夹斜长角闪岩为主的火山岩(廉康等,2016陈擎等,2021)。蚀变普遍为绿帘石片岩、阳起石片岩和绿帘绿泥石片岩,含少量片理化中基性熔岩凝灰岩、沉凝灰岩及片理化安山岩。

研究区以NW和NNW向韧性剪切带—脆性断裂为主体构造格架,褶皱断裂发育(李秀财等,2015)。韧性剪切(变形)带位于研究区中部,呈NWW向横贯全区,由中深—中浅2个层状韧性剪切带合并而成,宽度达1 km以上。构造带中岩石由眼球状、条痕状及条带状片麻岩、片岩组成,早期角闪石岩及大理岩呈石香肠、透镜状构造定向分布。由于后期断裂叠加,韧性剪切带内形成一系列劈理、折理、擦痕线理以及构造变形、剪切褶皱和拉伸线理等构造形迹,是稀有金属矿床成矿的有利位置。此外,研究区脆性断裂发育,由于后期花岗岩的侵入和动力变质作用,在外接触带形成NW向矿化带。

夏日达乌地区岩浆岩较发育,岩浆活动对成矿物质组分起活化萃取作用,岩浆活动具有多期次、多阶段性,对成矿十分有利(潘鑫等,2019)。浅灰色中粗粒斜长花岗岩体(γο)分布于研究区北东侧[图1(b)],中粗粒结构,局部具有斑状结构,块状构造,与南侧花岗闪长岩体[图1(b)]呈侵入接触,为晚奥陶世岩浆活动的产物(李峰等,2007张孝攀等,2015)。矿区北部分布有浅灰色中粗粒花岗闪长岩体(δγ),其中含有大量的闪长岩析离体,大小不等,宽度为几厘米至几米,呈长条状,近EW向展布,与达肯大板群和滩间山群火山岩组呈侵入或断层接触(徐新文,2009)。深灰色闪长岩体(δγ)分布于矿区中部,呈长条状近EW向展布,中细粒结构,块状构造,可能为南华纪至泥盆纪岩浆活动的产物(王进寿等,2022)。

研究区属柴达木变质岩区柴北缘变质岩带,达肯大坂群片麻岩岩组(Pt1d)主要岩石组合为片麻岩,夹有云母石英片岩、角闪片岩及大理岩。由于受后期中深构造相塑性流变和浅构造相韧性剪切变质变形作用的改造,达肯大坂群片麻岩岩性多样化,构造形迹复杂,具有层状无序特征,多呈强变形的构造片麻状。滩间山群由变火山岩组(OST1)组成的变质岩带,呈NWW-SEE向展布,变质程度为低绿片岩相。变质作用使原岩绿片岩化,构成早古生代浅变质地层,局部见火山熔岩、火山碎屑岩及正常沉积碎屑岩残留。后期叠加了较强的动力变质作用,广泛发育强变形顺层韧性剪切带、剪切褶皱及糜棱岩系列构造岩。

1.2 岩石学特征

夏日达乌铌钽矿区出露的斜长花岗岩、花岗闪长岩体侵位于达肯大坂(岩)群下岩段地层中,主要表现为中粗粒黑云母花岗斑岩(图2)。岩石主要由钾长石、斜长石、角闪石和石英等组成。其中,钾长石含量最高,约占岩石总量的30%~50%,多呈板状,颗粒表面轻微有黏土化蚀变,可见格子状双晶,条纹发育,主要为微斜长石及少量条纹长石,局部石英与钾长石互结成楔形连晶,形成文象结构。斜长石约占岩石总量的20%~35%,呈板状,表面可见细密的聚片双晶,环带发育,斜长石颗粒表面发生严重的绢云母化蚀变。石英占岩石总量的10%~30%,波状消光不明显,呈团块状聚集分布。黑云母占岩石总量的2%~8%,呈片状,多色性明显,杂乱分布,局部呈团块状聚集。

图2

图2   花岗岩手标本及显微镜下特征

Qtz-石英;Pl-斜长石;Kf-钾长石;Bit-黑云母

Fig.2   Hand specimens and microscopic characteristics of granite


2 样品特征及分析方法

对乌兰县夏日达乌地区达肯大坂(岩)群花岗斑岩进行了系统的野外地质调查,采集一套岩矿鉴定样品,选取10个典型样品进行了全岩元素地球化学分析,分析测试工作由澳实分析检测(广州)有限公司完成。其中,全岩主量元素采用XRF方法测定,将样品研磨至0.074 mm,并将粉末熔制为玻璃片,采用3080E型X射线荧光光谱仪进行分析;微量及稀土元素采用ICP-MS方法测定,采用Agilent7500a型电感耦合等离子体质谱仪进行分析。分析数据的相对标准偏差小于5%,分析结果见表1表2

表1   研究区铌钽矿样品主量元素分析结果

Table 1  Analysis results of major elements of niobium-tantalum ore samples in study area

元素(化合物)各样品主量元素含量
DS1-WuDS2-WuDS3-WuDS4-WuDS5-WuDS6-WuDS7-WuDS8-WuDS9-WuDS10-Wu
SiO276.4177.2275.2676.8175.0575.6576.7178.8477.7977.94
TiO20.070.130.120.120.140.130.120.120.120.12
Al2O313.1412.6813.6112.7413.8113.1412.5411.9412.5512.44
Fe2O30.580.060.160.050.140.210.120.070.150.08
FeO0.460.100.220.100.180.100.100.100.170.20
MnO0.060.000.000.000.000.000.000.000.010.01
MgO0.180.080.140.090.200.210.110.150.090.07
CaO0.290.040.110.060.150.150.100.060.050.04
Na2O1.920.250.320.230.330.311.690.210.230.21
K2O4.927.546.706.946.847.136.986.686.226.78
P2O50.020.020.020.020.020.020.020.020.020.02
LOI1.180.981.232.030.560.972.122.413.021.82
Total98.0598.1296.6697.1696.8697.0598.4998.1997.4097.91
ALK6.847.797.027.177.177.448.676.896.456.99
A/NK1.551.481.751.611.731.591.211.571.761.62
A/CNK1.461.461.701.591.681.541.191.551.741.60
AR3.084.163.103.553.113.545.373.703.103.55
δ1.401.771.531.521.601.702.231.321.201.40
SI2.231.001.861.212.602.641.222.081.310.95

注:主量元素含量单位为%,其他为无量纲

新窗口打开| 下载CSV


表2   研究区铌钽矿样品微量和稀土元素分析结果

Table 2  Analysis results of trace elements and rare earth elements of niobium-tantalum ore samples in study area

元素各样品微量和稀土元素含量
DS1-WuDS2-WuDS3-WuDS4-WuDS5-WuDS6-WuDS7-WuDS8-WuDS9-WuDS10-Wu
Rb408.00448.00381.00404.00416.00451.00391.00368.00341.00433.00
Ba83.9097.10205.0092.30104.00108.0084.6088.4073.7086.20
Th21.3019.20441.0019.7029.2037.5023.6045.00230.0013.20
U5.356.7411.104.594.755.014.643.576.625.06
Nb122.00120.00144.00113.00132.00133.00135.00123.00125.00125.00
Ta7.847.579.287.638.638.838.998.188.338.34
Sr28.5028.1021.3032.4036.2041.9028.5021.5024.1030.50
Hf6.646.707.787.037.177.687.307.126.386.49
Zr152.00148.00169.00147.00158.00159.00152.00149.00142.00148.00
Y11.4013.9014.0012.8013.4013.6012.408.9812.8013.50
La16.5015.9015.8016.7020.3021.5020.9019.0013.9016.90
Ce20.8021.0020.4021.9027.7028.4029.2025.0017.9022.00
Pr1.641.722.211.732.462.432.672.201.791.85
Nd4.484.456.134.486.545.847.025.905.064.61
Sm0.650.680.910.660.960.891.050.800.820.68
Eu0.080.110.150.100.140.130.090.100.110.11
Gd0.620.790.870.750.930.820.880.800.790.88
Tb0.190.210.240.200.230.250.210.100.220.22
Dy1.652.021.901.761.991.881.621.301.691.91
Ho0.430.520.490.480.510.510.450.300.440.47
Er1.842.261.881.972.062.111.711.401.771.91
Tm0.400.460.430.450.440.460.360.300.390.41
Yb3.043.643.173.483.373.682.692.302.903.12
Lu0.460.520.470.500.530.530.430.300.450.50
ΣREE52.7854.2855.0555.1668.1669.4369.2859.2448.2355.57
ΣLREE44.1543.8645.6045.5758.1059.1960.9352.4739.5846.15
ΣHREE8.6310.429.459.5910.0610.248.356.778.659.42
LREE/HREE5.124.214.834.755.785.787.307.754.584.90
δEu0.380.460.510.430.450.460.280.320.410.43
δCe0.770.790.730.800.800.790.810.790.740.78
(La/Sm)N15.9714.7110.9215.9213.3015.2012.5215.2810.6615.63
(La/Yb)N3.662.943.363.244.063.945.245.583.233.65
(Sm/Nd)N0.450.470.460.450.450.470.460.400.500.45
(Gd/Yb)N0.160.180.220.170.220.180.260.270.220.23

注:微量和稀土元素含量单位为10-6,其余为无量纲

新窗口打开| 下载CSV


3 地球化学特征

3.1 主量元素地球化学特征

样品的主量元素及相关参数分析结果见表1。由表1可知,测试样品的烧失量介于0.98%~3.02%之间,平均值为1.63%。其中,SiO2含量较高,变化范围为75.05%~78.84%,K2O含量在4.92%~7.54%之间,Al2O3含量在11.94%~13.81%之间,ALK(K2O+Na2O)含量在6.45%~7.79%之间。在TAS岩石类型划分图解中,样品投点均位于花岗岩区域内(图3),里特曼指数(δ)为1.20~2.23,属于钙碱性岩,碱度率(AR)在3.08~5.37之间,与花岗岩硅碱分类图(图4)中相吻合。A/CNK值为1.19~1.68,在A/NK-A/CNK判别图(图5)中,样品投点分布于过铝质区域,属于过铝质岩。SI值介于0.95~2.64之间,说明岩浆分异程度高。在K2O-SiO2图解(图6)中,样品投点普遍落入高钾范围内,反映岩浆原始成分具有富钾性质。样品主量元素分析结果显示,该地区花岗岩具有高硅高钾富铝,其余主量元素显示出低镁低锰、贫磷低钛的特征。

图3

图3   火成岩系统全碱—硅(TAS)分类图

(底图据Middlemost,1994

1-橄榄辉长岩;2a-碱性辉长岩;2b-亚碱性辉长岩;3-辉长闪长岩;4-闪长岩;5-花岗闪长岩;6-花岗岩;7-硅英岩;8-二长辉长岩;9-二长闪长岩;10-二长岩;11-石英二长岩;12-正长岩;13-副长石辉长岩;14-副长石二长闪长岩;15-副长石二长正长岩;16-副长正长岩;17-副长深成岩;18-霓方钠岩/磷霞岩/粗白榴岩

Fig.3   Total alkali-silicon(TAS) classification diagram of igneous rock system(base map after Middlemost,1994


图4

图4   (K2O+Na2O-CaO)-SiO2图解(底图据Frost,2001)

Fig.4   (K2O+Na2O-CaO)-SiO2 diagram(base map after Frost,2001)


图5

图5   A/CNK-A/NK图解(底图据Maniar et al.,1989

Fig.5   A/CNK-A/NK diagram(base map after Maniar et al.,1989)


图6

图6   K2O-SiO2图解(底图据Peccerillo et al.,1976

Fig.6   K2O-SiO2 diagram(base map after Peccerillo et al.,1976)


3.2 稀土元素地球化学特征

稀土元素测试结果见表2。黑云母花岗斑岩稀土元素总量在48.23×10-6~69.43×10-6之间,其中轻重稀土元素含量差异较为明显,LREE含量在39.58×10-6~60.93×10-6之间,HREE含量在6.77×10-6~10.42×10-6之间,LREE/HREE比值变化范围在4.21~7.75之间,表明相对富集轻稀土元素,亏损重稀土元素。(La/Yb)N值介于2.94~5.58之间,(Gd/Yb)N值均小于1,表明轻重稀土存在较明显的分异作用。(La/Sm)N值介于10.66~15.97之间,(Sm/Nd)N值均小于0.5,表明稀土元素分馏程度较高;δEu为0.28~0.51,平均值为0.41,显示出明显的负异常;δCe为0.73~0.81,平均值为0.78。在球粒陨石标准化稀土元素配分图(图7)上,表现为轻稀土元素富集、重稀土元素相对亏损的右倾型曲线,整体上轻(La-Nd)、中(Sm-Ho)、重(Er-Lu+Y)元素分异明显,在Eu元素处出现明显的“谷”。

图7

图7   稀土元素配分曲线(底图据Sun et al.,1989

Fig.7   Distribution curves of rare earth elements(base map after Sun et al.,1989


3.3 微量元素地球化学特征

由夏日达乌铌钽矿区微量元素分析测试结果(表2)可知,10件花岗斑岩样品中富集高场强元素Nb、Ta、Hf、Zr和大离子亲石元素Rb、Ba、Th。Nb元素相对富集,含量为113×10-6~144×10-6,Ta含量为7.57×10-6~9.28×10-6,Nb/Ta比值为15.1。Rb含量为341×10-6~448×10-6,Ba含量为73.7×10-6~205×10-6,二者含量相对较高。Sr含量为21.3×10-6~40.2×10-6,Eu含量较低,在0.08×10-6~0.20×10-6之间。在微量元素原始地幔标准化蛛网图(图8)中,表现出大离子亲石元素相对富集、高场强元素相对亏损的特征。

图8

图8   微量元素原始地幔标准化蛛网图(底图据Sun et al.,1989

Fig.8   Primitive mantle normalized spider diagram of trace elements(base map after Sun et al.,1989


4 讨论

4.1 岩石成因

根据CIPW标准矿物计算,夏日达乌铌钽矿区黑云母花岗斑岩含有白云母、电气石和石榴子石等矿物,属于过铝质花岗岩,这与前人提出的S型花岗岩的岩相学特征(Sylvester,1998Forst et al.,2001吴继承等,2010)相吻合。主量元素显示出高硅、高钾、富铝的特征,在Na2O-K2O图解(图9)中,样品投点位于S型花岗岩处。在Rb/Sr-Rb/Ba图解(图10)中,样品投点落入富黏土源岩区。在Rb-Ba-Sr图解(图11)中,样品投点落在SDG区,属于高度分异花岗岩(Bouseily et al.,1975)。在Th-Rb和Y-Rb图解(图12)中,除个别样品外,多数样品投点的Th和Y随Rb升高呈基本不变的趋势,这与Chappell et al.(1999)提出的S型花岗岩特征基本吻合。S型花岗岩中U、Th、Nb、La和Ce等元素的背景值较高,是成矿来源的母体。相比其他岩类,研究区过铝质S型花岗岩中稀土、金属元素含量普遍较高,轻、重稀土元素分异较大,各元素之间相关性较强,富集大离子亲石元素和高场强元素。综上所述,认为夏日达乌铌钽矿区黑云母花岗斑岩为高分异过铝质S型花岗岩。

图9

图9   花岗岩Na2O-K2O图解 (底图据Collins et al.,1982

Collins et al.,1982

Fig.9   Na2O-K2O diagram of granite(base map after


图10

图10   花岗岩Rb/Sr-Rb/Ba图解(底图据Sylvester,1998

Fig.10   Rb/Sr-Rb/Ba diagram of granite(base map after Sylvester,1998


图11

图11   花岗岩Rb-Ba-Sr图解(底图据 Bouseily et al.,1975

SDG-高度分异的花岗岩;NG-正常花岗岩;AG-异常花岗岩;GD-花岗闪长岩;QD-石英闪长岩;D-闪长岩

Fig.11   Rb-Ba-Sr diagram of granite(base map after Bouseily et al.,1975


图12

图12   花岗岩Th-Rb和Y-Rb图解(底图据Sylvester,1998

Fig.12   Th-Rb and Y-Rb diagrams of granite(base map after Sylvester,1998


4.2 物质来源

以往研究表明,过铝质花岗岩主要是地壳物质发生部分熔融形成的(Sylvester,1998王立功等,2022)。Al2O3/TiO2比值能够反映其形成时的部分熔融温度(Sylvester,1998陈有炘等,2017),当熔融温度低于875 ℃时,Al2O3/TiO>100,而当熔融温度超过875 ℃时,Al2O3/TiO2<100。研究区样品Al2O3/TiO2比值平均值为110,表明源区属于低温熔融类型。此外,利用锆石Ti温度计,根据样品中锆石的Ti含量,计算得出锆石的结晶温度范围为594~767 ℃,平均值为694 ℃。因此,从发生部分熔融到岩浆固结,温度范围从767 ℃左右下降至约594 ℃。岩浆初始结晶的温度表明,研究区花岗岩是地壳在低温(≤700 ℃)环境下部分熔融形成的。但锆石饱和温度计算结果表明,夏日达乌地区花岗岩的锆石饱和温度介于814~874 ℃之间,平均值为833 ℃,属于高温花岗岩,不排除地幔物质上侵的可能。

稀土、微量元素含量及其配分模式可指示物源信息(王中刚等,1989)。由原始地幔标准化微量元素蛛网图(图7)中可以看出,大离子亲石元素Rb和Th相对富集,Ba、Sr相对亏损,高场强元素Nb、Ta、Hf和Nd相对富集,暗示着花岗岩的原岩具有壳源岩石的特征。其中,Nb、Ta元素在地质作用过程中较稳定,很少被流体迁移,有示踪原始岩浆源区的特征(Jörg et al.,2007;Donoghue et al.,2008魏均启等,2021)。10件测试样品中Nb/Ta比值约为15,判断物源为地壳物质,此外Nd/Th比值也与壳源岩石特征相似,Rb-Sr比值对花岗岩浆源区成分具有很好的指示作用(Sylvester,1998史少飞等,2020)。一般幔源岩浆Rb/Sr<0.05,壳幔混源岩浆Rb/Sr=0.05~0.50,而壳源Rb/Sr>0.5,测试样品Rb/Sr较高,变化范围在9.2~17.9之间,说明源岩可能主要来自地壳,并经历了较高程度的结晶分异。由La/Yb-Eu变异图(图13)可知,样品投点落在壳源区。由La/Sm-La判别图(图14)可以看出,样品投点大致与部分熔融曲线类似,暗示着岩浆形成机制可能与部分熔融有关(Sylvester,1998菅坤坤等,2020)。由此可以推测,柴北缘夏日达乌铌钽矿区黑云母花岗斑岩物质来源主要由地壳发生低温熔融所提供,但也有幔源物质及分离结晶产物的混入。

图13

图13   夏日达乌地区La/Yb-Eu图解(底图据Pearce,1996

Fig.13   La/Yb-Eu diagram of the Xiaridawu area(base map after Pearce,1996


图14

图14   花岗岩La/Sm-La判别图解(底图据Allegre et al.,1978

Fig.14   La/Sm-La diagram of granite(base map after Allegre et al.,1978


4.3 构造环境

花岗岩构造环境的准确识别对于研究其动力学背景具有重要意义,S型花岗岩被认为是同碰撞构造背景下形成的花岗岩(Sylvester,1998)。在多组主量元素构造环境判别图解(图15)中,柴北缘夏日达乌铌钽矿区花岗斑岩样品投点主要落入POG和IAG+CAG+CCG区,因此总体上属于POG(造山后)和IAG+CAG+CCG组类型。在多组微量元素构造环境判别图解(图16)中,样品投点落入由syn-COLG区(同碰撞)向WPG(板内)过渡的区域,暗示着该矿区花岗斑岩形成于碰撞造山向板内过渡的造山后构造环境(张新远等,2015)。根据Rb-Hf-Ta三元图解来区分碰撞带中不同构造演化阶段花岗岩(图17),夏日达乌铌钽矿区黑云母花岗斑岩样品投点均落在后碰撞构造环境中。即在后碰撞期之内,发生构造运动并产生大量的岩浆,形成过铝质花岗斑岩,此后发生部分熔融及分离结晶作用形成高分异花岗斑岩。

图15

图15   花岗岩类构造环境主量元素类别图解(底图据Maniar et al.,1989

IAG-岛弧;CAG-大陆弧;CCG-大陆碰撞;POG-造山后;RRG-与裂谷有关;CEUG-陆内造陆运动降起;OP-大洋斜长花岗岩类

Fig.15   Classification diagram of major elements in granite tectonic environment(base map after Maniar et al.,1989


图16

图16   花岗岩类构造环境微量元素类别图解(底图据Pearce et al.,1984

VAG-火山弧;syn-COLG-同碰撞;WPG-板内;ORG-洋脊

Fig.16   Classification diagram of trace elements in granite tectonic environment (base map after Pearce et al.,1984


图17

图17   花岗岩Hf-Rb-Ta判别图解(底图据Harris et al.,1986

Fig.17   Hf-Rb-Ta discrimination diagram of granite(base map after Harris et al.,1986


5 结论

(1)夏日达乌地区黑云母花岗斑岩具有高硅、高钾、富铝的特征,其余主量元素显示出低镁低锰、贫磷低钛的特征;富集轻稀土元素,相对亏损重稀土元素,REE球粒陨石标准化配分曲线呈“V”字形分布,具有明显负Eu异常;相对富集大离子亲石元素,相对亏损高场强元素。

(2)根据主微量及稀土元素相关参数分析,该矿区花岗斑岩属于高分异S型过铝质花岗岩,物质来源主要由地壳发生低温熔融所提供,不排除有地幔物质的混染,也不乏部分分离结晶产物,对该地区铌钽矿成矿具有重要作用。

(3)根据多组主量及微量元素构造环境判别,柴北缘夏日达乌花铌钽矿区花岗斑岩形成于碰撞造山向板内过渡的碰撞构造环境。

http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-3-408.shtml

参考文献

Allegre C JMinster J F1978.

Quantiative models of trace element behavior in magmatic process

[J].Earth and Planetary Science Letters,381):1-25.

[本文引用: 2]

Bouseily A M ESokkary A A E1975.

The relation between Rb,Ba and Sr in granitic rocks

[J].Chemical Geology,163):207-219.

[本文引用: 3]

Chappell B WWhite A J R1999.

Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites

[J].Lithos,46535-551.

[本文引用: 1]

Chen QingZhao RuyiKang Liganget al2021.

Geological characteristics of albitite dikes and its constraint on genesis of Chachaxiangka U-polymetallic deposit in Qinghai Province

[J].Mineral Deposits,405):1029-1044.

Chen YouxinGao FengPei Xianzhiet al2017.

Chronology,geochemistry and tectonic implication of the Huiteng granitic pluton in the Altay area,Xinjiang

[J].Acta Petrologica Sinica,3310):3076-3090.

Collins W JBeams S DWhite A J Ret al1982.

Nature and origin of A-typegranites with particular reference to southeastern Australia

[J].Contributions to Mineralogy and Petrology,802):189-200.

[本文引用: 2]

Donoghue ETroll V RHarris Cet al2008.

Low-temperature hydrothermal alteration of intra-caldera tuffs,Miocene Te-jeda caldera,Gran Canaria, Canary Islands

[J].Geochimica et Cosmochimica Acta,1764):551-564.

[本文引用: 1]

Forst B RBarnes C GCollins Wet al2001.

A geochemical classification for granitic rocks

[J].Journal of Petrology,422033-2048.

[本文引用: 1]

Harris N B WPearce J ATindle A G1986.

Geochemical Characteristics of Collision-Zone Magmatism

[M]//Coward M P,Reis A C.Collision Tectonics.LondonGeological Society,London,Special Publications.

[本文引用: 2]

He XiaoyuanYang XingkeWang Yonget al2020.

Petrology,geochemistry and zircon U-Pb geochronology of the Chaidamushan granite from the southern margin of Qilianshan

[J].Acta Geologica Sinica,944):1248-1263.

Jia QunziDu YuliangZhao Zijiet al2013.

Zircon LA-MC-ICPMS U-Pb dating and geochemical characteristics of the plagiogranite porphyry from Tanjianshan gold ore district in north margin of Qaidam Basin

[J].Geological Science and Technology Information,321):87-93.

Jian KunkunHe YuanfangZhao Duanchanget al2020.

Zircon U-Pb dating and geochemical characteristics of Zaohuogou granitoids in the middle part of East Kunlun,China and their tectonic significance

[J]. Journal of Earth Sciences and Environment,425):603-621.

Jöerg A PCarsten MAndreas S2007.

Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust-mantle differentiation and the fate of Niobium

[J].Earth and Planetary Science Letters,2541/2):158-172.

Li FengWu ZhiliangLi Baozhu2007.

Recognition on formation age of the Tanjianshan group on the northern margin of the Qaidam Basin and its geological significance

[J].Geotectonica et Metallogenia,312):226-233.

Li H KLu S N2001.

Geological significance of the Neoproterozoic Granitoid Belt in the northern margin of the Qaidam Basin, Northwest China

[J].Gondwana Research,44):680-681.

[本文引用: 1]

Li ShanpingXue WangwenRen Huaet al2018.

Present situation and metallogenic regularity of ‘Three Rare’ mineral resources in Qinghai Province

[J].Qinghai Technology,256):10-15.

Li XiucaiNiu ManlanYan Zhenet al2015.

LP/HT metamorphic rocks in Wulan County,Qinghai Province:An Early Paleozoic paired metamorphic belt on the northern Qaidam Basin?

[J].Chinese Science Bulletin,6035):3501-3513.

Lian KangLiu LinChen Qing2016.

Geological characteristic and control factors in Chachaxiangka uranium deposit,Qinghai

[J].Journal of East China University of Technology(Natural Science),393):245-252.

Maniar P DPiccoli P M1989.

Tectonic discrimination of granitoids

[J].Geological Society of America Bulletin,1015):635-643.

[本文引用: 3]

Middlemost E1994.

Naming materials in the magma/igneous rock system

[J].Earth-Science Reviews,373/4):215-224.

[本文引用: 2]

Pan XinQiao JianfengYang Zhanfenget al2019.

Geological characteristics and ore-controlling regularity of Jiaotongshe niobium-tantalum deposit,Qinghai

[J].Mineral Exploration,108):1792-1800.

Pearce J A1996.

Source and settings of granitic rocks

[J].Episodes,19120-125.

[本文引用: 2]

Pearce J AHarris N B WTindle A G1984.

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

[J].Journal of Petrology,254):956-983.

[本文引用: 2]

Peccerillo ATaylor S R1976.

Geochemistry of Eocene calcal kaline volcanic rocks from the Kastamonu Area,Northern Turkey

[J].Contributions to Mineralogy and Petrology,581):63-81.

[本文引用: 1]

Peng XuanZhuang YujunGu Pingyanget al2022.

Petrogenesis of the gneissic granite in Xiaosaishiteng Mountain, Northern Qaidam:Constraint from geochemistry,zircon U-Pb geochronology and Hf isotopes

[J].Northwestern Geology,554):221-239.

Rong XiaoHu YongxingChen Qinget al2022.

Geochronological and geochemical characteristics of diorite and the geological significance in Chachaxiangka U-Nb-REE deposit at the northern margin of the Qaidam Basin

[J].Uranium Geology,382):207-220.

Shi ShaofeiYuan HaoweiXiao Yuanfuet al2020.

Geochronology and geochemistry of the Early Cretaceous intrusive rocks in Qinglong area,Tibet:Constraints on closure time of Bangonghu-Nujiang ocean basin

[J].Geotectonica et Me-tallogenia,445):998-1011.

Song ShuguangZhang CongLi Xianhuaet al2011.

HP/UHP metamorphic time of eclogite in the Xitieshan terrane,North Qaidam UHPM belt,NW China

[J].Acta Petrologica Sinica,274):1191-1197.

Sun S SMcdonough W F1989.

Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and process

[J].Geological Society,421):313-345.

[本文引用: 4]

Sylvester P J1998.

Post-collisional strongly peraluminous granites

[J].Lithos,451):29-44.

[本文引用: 10]

Wang BingzhangFu ChangleiPan Tonget al2022.

Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution

[J].Acta Petrologica Sinica,389):2723-2742.

Wang JinshouPan TongLi Penget al2022.

Metallogenic series of deposits in the Northern Qaidam metallogenic belt of Qinghai Province,China

[J].Journal of Earth Sciences and Environment,443):391-412.

Wang LigongLi XiuzhangYu Xiaoweiet al2022.

Petrogenesis and tectonic setting of the Dazeshan and Tianzhushan granites in Jiaodong Peninsula:Geochemistry,zircon U-Pb geochronology and Lu-Hf isotopic constraints

[J].Journal of Jilin University(Earth Science Edition),523):879-898.

Wang ZhonggangYu XueyuanZhao Zhenhuaet al1989.Geochemistry of Rare Earth Elements[M].BeijingScience Press.

Wei JunqiZhu DanWang Fanget al2021.

Mineralogical characteristics and occurrence state of niobium and tantalum in the Duanfengshan Nb-Ta deposit in Hubei Province,China

[J].Acta Mineralogica Sinica,413):319-326.

Wu CailaiLei MinWu Diet al2016.

Zircon SHRIMP dating and genesis of granites in Wulan area of Northern Qaidam

[J].Acta Geoscientica Sinica,374):493-516.

Wu CailaiYang JingsuiXu Zhiqinet al2004.

Granitic magmatism on the Early Paleozoic UHP Belt of Northern Qaidam,NW China

[J].Acta Geologica Sinica,785):658-674.

Wu JichengLi JihuaLi Taibinget al2010.

Geochemistry,petrogenesis and tectonic setting of the peraluminous granites in the Nacheng gold deposit,Yongning,Guangdong

[J].Bulletin of Mineralogy, Petrology and Geochemistry,294):364-372.

Xu Xinwen2009.

The types,characteristics and prospecting direction of niobium and tantalum deposits in Qinghai Province

[J].West-China Exploration Engineering,213):144-147.

Yang J SXu Z QLi H Bet al1998.

Discovery of eclogite at northern margin of Qaidam Basin,NW China

[J].Chinese Science Bulletin,4320):1755-1760.

[本文引用: 1]

Yang JingsuiXu ZhiqinSong Shuguanget al2000.

Discovery of eclogite in Dulan, Qinghai Province and its significance for studying the HP-UHP metamorphic belt along the Central Orogenic Belt of China

[J].Acta Geologica Sinica,742):156-168.

Yue YueSun DeyouHou Kejunet al2021.

Geochronology and geochemistry of Triassic gabbro in Northern Wulan,Northern Margin of Qaidam Basin

[J].Journal of Jilin University(Earth Science Edition),511):154-168.

Zhang Jianping2005.

Survey report of niobium and tantalum ore in Xiaridawu area,Wulan County,Qinghai Province

[R].XiningQinghai Nuclear Industry Geological Bureau.

[本文引用: 1]

Zhang J XYang J SXu Z Qet al2010.

Two contrasting eclogite types on the northern margin of the Qaidam Basin, Western China

[J].Acta Geologica Sinica(English Edition),763):331-338.

[本文引用: 1]

Zhang JianxinYu ShengyaoLi Yunshuaiet al2015.

Subduction,accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system

[J].Acta Petrologica Sinica,3112):3531-3554.

Zhang JinmingWang BingzhangXue Wanwenet al2022.

Zircon U-Pb geochronology, geochemistry and Hf isotopes of Shenglikou muscovite monzogranite in northern margin of Qaidam Basin

[J].Geology in China,492):620-630.

Zhang JinpengNiu ManlanLi Chenet al2022.

Petrogenesis and geological significance of Late Permian-Middle Triassic granites in Wulan area, eastern segment of the northern margin of the Qaidam Basin

[J].Chinese Journal of Geology(Scientia Geologica Sinica),574):1103-1129.

Zhang XiaopanWang QuanfengHui Jieet al2015.

Chemical characteristics of volcanic rocks from the Tanjianshan group on the northern margin of the Qaidam Basin and its tectonic environment

[J].Journal of Mineralogy and Petro-logy,351):18-26.

Zhang XinyuanLi WufuWang Chuntaoet al2015.

Zircon U-Pb dating of mafic dikes and geochemical features and significance in Xiariha area on the northern rim of Qaidam Basin

[J].Journal of Qinghai University(Natural Science Edition),333):64-72.

Zhu XiaohuiWang HongliangYang Menget al2016.

Zircon U-Pb age of the monzogranite from the middle segment of the Qaidam Mountain composite granite on the south margin of the Qilian Mountain

[J].Geology in China,433):751-767.

陈擎赵如意康利刚2021.

青海查查香卡铀多金属矿床钠长岩脉地质特征及其对矿床成因的约束

[J].矿床地质,405):1029-1044.

[本文引用: 1]

陈有炘高峰裴先治2017.

新疆阿尔泰地区辉腾花岗岩体年代学、地球化学特征及构造意义

[J].岩石学报,3310):3076-3090.

[本文引用: 1]

贺小元杨兴科王永2020.

祁连南缘柴达木山花岗岩的岩石学、地球化学及锆石U-Pb年代学研究

[J].地质学报,944):1248-1263.

[本文引用: 1]

贾群子杜玉良赵子基2013.

柴达木盆地北缘滩间山金矿区斜长花岗斑岩锆石LA-MC-ICPMS测年及其岩石地球化学特征

[J].地质科技情报,321):87-93.

[本文引用: 1]

菅坤坤何元方赵端昌2020.

东昆仑中段灶火沟花岗岩锆石U-Pb年代学、地球化学特征及其构造意义

[J].地球科学与环境学报,425):603-621.

[本文引用: 1]

李峰吴志亮李保珠2007.

柴达木北缘滩间山群时代及其地质意义

[J].大地构造与成矿学,312):226-233.

[本文引用: 1]

李善平薛万文任华2018.

青海省“三稀”矿产资源现状及成矿规律

[J].青海科技,256):10-15.

[本文引用: 1]

李秀财牛漫兰闫臻2015.

青海省乌兰县早古生代低压高温变质岩:柴北缘存在双变质带?

[J].科学通报,6035):3501-3513.

[本文引用: 1]

廉康刘林陈擎2016.

青海查查香卡铀矿地质特征及控矿因素分析

[J].东华理工大学学报(自然科学版),393):245-252.

[本文引用: 1]

潘鑫乔建峰杨占凤2019.

青海交通社铌钽矿床地质特征及控矿规律

[J].矿产勘查,108):1792-1800.

[本文引用: 2]

彭璇庄玉军辜平阳2022.

柴北缘小赛什腾山片麻状花岗岩的成因:来自地球化学、锆石U-Pb年代学及Hf同位素约束

[J].西北地质,554):221-239.

[本文引用: 2]

荣骁胡永兴陈擎2022.

柴北缘查查香卡铀—铌—稀土矿区闪长岩年代学、地球化学特征及其地质意义

[J].铀矿地质,382):207-220.

[本文引用: 1]

史少飞袁浩为肖渊甫2020.

西藏青龙乡地区早白垩世侵入岩年代学和地球化学:对班公湖—怒江洋盆闭合时限的制约

[J].大地构造与成矿学,445):998-1011.

[本文引用: 1]

宋述光张聪李献华2011.

柴北缘超高压带中锡铁山榴辉岩的变质时代

[J].岩石学报,274):1191-1197.

[本文引用: 1]

王秉璋付长垒潘彤2022.

柴北缘赛什腾地区早古生代岩浆活动与构造演化

[J].岩石学报,389):2723-2742.

[本文引用: 1]

王进寿潘彤李鹏2022.

青海省柴北缘成矿带矿床成矿系列

[J].地球科学与环境学报,443):391-412.

[本文引用: 2]

王立功李秀章于晓卫2022.

胶东大泽山、天柱山花岗岩岩石成因和构造背景:地球化学、锆石U-Pb年代学及Lu-Hf同位素约束

[J].吉林大学学报(地球科学版),523):879-898.

[本文引用: 1]

王中刚于学元赵振华1989.稀土元素地球化学[M].北京科学出版社.

[本文引用: 1]

魏均启朱丹王芳2021.

湖北断峰山铌钽矿矿物学特征和铌钽赋存状态

[J].矿物学报,413):319-326.

[本文引用: 1]

吴才来雷敏吴迪2016.

柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因

[J].地球学报,374):493-516.

[本文引用: 2]

吴才来杨经绥许志琴2004.

柴达木盆地北缘古生代超高压带中花岗质岩浆作用

[J].地质学报,785):658-674.

[本文引用: 1]

吴继承李己华李太兵2010.

广东永宁那程金矿区花岗岩:地球化学特征、成因与构造环境

[J].矿物岩石地球化学通报,294):364-372.

[本文引用: 1]

徐新文2009.

青海省铌钽矿类型、特征及找矿方向

[J].西部探矿工程,213):144-147.

[本文引用: 4]

杨经绥许志琴宋述光2000.

青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义

[J].地质学报,742):156-168.

[本文引用: 1]

岳悦孙德有侯可军2021.

柴北缘乌兰北部三叠纪辉长岩的年代学和地球化学特征

[J].吉林大学学报(地球科学版),511):154-168.

[本文引用: 1]

张建平2005.

青海省乌兰县夏日达乌地区铌钽矿普查报告

[R].西宁青海省核工业地质局.

[本文引用: 1]

张建新于胜尧李云帅2015.

原特提斯洋的俯冲、增生及闭合:阿尔金—祁连—柴北缘造山系早古生代增生/碰撞造山作用

[J].岩石学报,3112):3531-3554.

[本文引用: 1]

张金明王秉璋薛万文2022.

柴北缘胜利口东地区白云母二长花岗岩锆石U-Pb年代学、地球化学及Hf同位素

[J].中国地质,492):620-630.

[本文引用: 1]

张金鹏牛漫兰李晨2022.

柴北缘构造带东段乌兰地区晚二叠世—中三叠世花岗岩成因及其地质意义

[J].地质科学,574):1103-1129.

[本文引用: 2]

张孝攀王权锋惠洁2015.

柴北缘滩间山群火山岩岩石化学特征及构造环境

[J].矿物岩石,351):18-26.

[本文引用: 1]

张新远李五福王春涛2015.

柴北缘夏日哈地区二长花岗岩锆石U-Pb定年、地球化学特征及地质意义

[J].青海大学学报(自然科学版),333):64-72.

[本文引用: 1]

朱小辉王洪亮杨猛2016.

祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义

[J].中国地质,433):751-767.

[本文引用: 1]

/