img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2022, 30(6): 848-865 doi: 10.11872/j.issn.1005-2518.2022.06.074

矿产勘查与资源评价

赣西浒坑钨矿床成矿岩体的磷灰石和锆石微量元素特征及其对成岩成矿的指示

王华,1, 邹少浩,1, 陈龙2, 许德如1, 陈喜连1, 王雪娜1, 冯浩东1

1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013

2.江西省地质局第四地质大队,江西 萍乡 337000

Trace Element Characteristics of Zircon and Apatite Metallogenic in Rocks of Hukeng Tungsten Deposit in Western Jiangxi Province:Implications for Petrogenesis and Mineralization

WANG Hua,1, ZOU Shaohao,1, CHEN Long2, XU Deru1, CHEN Xilian1, WANG Xuena1, FENG Haodong1

1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China

2.The Fourth Geological Brigade of Jiangxi Geological Bureau, Pingxiang 337000, Jiangxi, China

通讯作者: 邹少浩(1990-),男,湖北孝感人,博士,助理研究员,从事矿床学研究工作。shaohaozou@hotmail.com

收稿日期: 2022-06-09   修回日期: 2022-09-13  

基金资助: 国家自然科学基金项目“江南古陆金(多金属)大规模成矿的机理研究”.  41930428
“胶体金的稳定性及其对金富集成矿的作用:以豫西吉家洼金矿床为例”.  42002089

Received: 2022-06-09   Revised: 2022-09-13  

作者简介 About authors

王华(1999-),男,湖南益阳人,硕士研究生,从事热液矿床研究工作wang_hua2021@163.com , E-mail:wang_hua2021@163.com

摘要

赣西地区浒坑钨矿是我国华南钨、锡、铜多金属成矿区与中生代岩浆活动密切相关的典型矿床之一。对浒坑钨矿床中与成矿有关的白云母花岗岩开展了锆石U-Pb定年、磷灰石和锆石原位微量元素研究,结果表明:赋矿白云母花岗岩的成岩时代为(152.3±1.73)Ma;磷灰石具有特殊的“M”型REE球粒陨石标准化配分模式,富F和Mn,贫Cl和Mg;锆石具有高Th/U比值,REE球粒陨石标准化配分模式亏损LREE、富集HREE。锆石微量元素(Ce、U和Ti)温度计和氧逸度计结果表明,锆石形成于岩浆早期高温(800 ℃)和低氧逸度条件下。研究认为,浒坑赋矿花岗岩在演化初期经历了强烈的矿物结晶分异,矿床的形成可能与还原性高分异岩浆演化相关。

关键词: 锆石 ; 磷灰石 ; U-Pb定年 ; 微量元素 ; 成矿岩浆 ; 浒坑钨矿

Abstract

The South China Block is an important polymetallic metallogenic area mainly related to the W,Sn,Cu and other metals,most of that mineralization is closely related to the Mesozoic magmatism.Based on the analysis of zircon U-Pb dating and trace element of apatite and zircon of the muscovite granite related to mineralization in the Hukeng tungsten deposit,the age,magmatic properties and evolution characteristics of the metallogenic rock was constraint in this study.The results show that the muscovite granite was formed at (152.3±1.73)Ma,which is consistent with the peak period of polymetallic mineralization in South China(170~150 Ma).In addition,trace element of apatite shows that it has a M-shaped REE chondrite normalized pattern,with features of enrich in F[w(F) is 3.52%~4.09%)]and Mn(5 081×10-6~13 948×10-6),and depleted in Cl[w(Cl)<0.012%] and Mg(5.91×10-6~24.08×10-6),which are consistent with that in the high fractionated S-type granite.Besides,trace element of zircon shows that it has high Th/U ratio,LREE-depleted and HREE-enriched REE chondrite normalized pattern.Furthermore,the oxidized state and temperature of the rock were constraint by Ce,U and Ti content in zircon,which shows that zircon was crystallized at the conditions of high temperature(800 ℃) and low oxygen fugacity in the early period of magma.Combined with previous studies,it is concluded that the Hukeng granite experienced strong early fractional crystallization and the formation of the Hukeng deposit may be related to the evolution of reductive highly fractionated magmas.

Keywords: zircon ; apatite ; U-Pb dating ; trace element ; ore-forming magma ; Hukeng tungsten deposit

PDF (4218KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王华, 邹少浩, 陈龙, 许德如, 陈喜连, 王雪娜, 冯浩东. 赣西浒坑钨矿床成矿岩体的磷灰石和锆石微量元素特征及其对成岩成矿的指示[J]. 黄金科学技术, 2022, 30(6): 848-865 doi:10.11872/j.issn.1005-2518.2022.06.074

WANG Hua, ZOU Shaohao, CHEN Long, XU Deru, CHEN Xilian, WANG Xuena, FENG Haodong. Trace Element Characteristics of Zircon and Apatite Metallogenic in Rocks of Hukeng Tungsten Deposit in Western Jiangxi Province:Implications for Petrogenesis and Mineralization[J]. Gold Science and Technology, 2022, 30(6): 848-865 doi:10.11872/j.issn.1005-2518.2022.06.074

华南是我国乃至世界重要的金属资源基地,区内发育有众多与燕山期花岗质岩浆有关的钨锡多金属矿床。大量研究表明,华南板块在燕山活化造山时期发生地壳重熔,W和Sn等金属元素主要赋存于S型或Ⅰ型花岗侵入体内,经历各种地质作用和物理化学过程之后形成了大量的钨锡多金属矿床,主要类型有石英脉型钨矿、云英岩型钨矿、矽卡岩型钨矿以及其他重要的类型(Li et al.,2021bSu et al.,2021)。

浒坑钨矿床位于华南南岭成矿带内的武功山成矿亚带,该带分布有广泛且多期的花岗岩体,是华南石英脉型钨矿的典型代表。前人有关浒坑地区矿床的研究主要集中于构造(章伟,2009)、同位素年龄(刘珺等,2008a2008b)和岩石地球化学(Liu et al.,2011)等方面,但对该区钨矿床成矿花岗岩的性质及其演化历史的研究相对较少。

磷灰石和锆石作为火成岩中最为常见的副矿物,其中的微量元素和同位素记录着丰富的地球化学信息,是研究火成岩形成年代、岩浆性质、岩浆演化过程、岩石成因和矿床成因等方面的理想媒介(Hoskin,2005Liu et al.,2010Cao et al.,2012Loader et al.,20172022Xing et al.,2020)。因此,本文基于前人研究资料,重点对浒坑钨矿床的成矿白云母花岗岩开展磷灰石和锆石微量元素地球化学特征和U-Pb年代学研究,旨在探讨浒坑地区成岩成矿的岩浆物理化学条件、成矿时代及成矿背景,以期为该区的矿床地质研究、成矿模型建立和矿产勘查工作提供理论依据。

1 地质背景及矿区地质特征

1.1 地质背景

华南板块位于欧亚大陆东南缘,北部与秦岭—大别造山带接壤、西至青藏高原,东邻太平洋板块,是我国重要的多金属成矿省(Mao et al.,20112021Li et al.,2021a)。华南板块是由扬子和华夏两大地块在新元古代早期碰撞拼合而成,江南造山带可视为其缝合线(郭令智等,19831984任纪舜,1990舒良树,2012)。之后,板块内部经历了加里东期、印支期和燕山期的一系列构造—岩浆活动(施央申等,1995Jia et al.,2022),形成了广泛的花岗岩、火山岩以及一系列的钨、锡、钼、铋、铌、钽、铜、铅和锌等多金属矿床(Su et al.,2021Zhou et al.,2006Mao et al.,2011Zhao et al.,2018)。加里东期,华南大陆志留系岩浆活动导致大规模的S型花岗岩形成(吴富江等,2003),但与该期岩浆岩有关的热液矿床相对较少,主要分布在广西苗儿山—越城岭地区和大瑶山地区。印支期,华南板块开始发生内部的碰撞—挤压—推覆—隆升事件,致使区域内的构造格架复杂多样,局部地区发育有基性岩浆(楼法生等,2002周新民,2003),该期岩浆—构造事件导致南岭地区发育少量的钨锡矿床。燕山期的壳幔岩浆活动表现为大规模、多期性,侵入岩套主要为I型和A型花岗岩以及规模相对较小的高分异S型花岗岩(Xu et al.,2018Wang et al.,2019Zhang et al.,2020),这些岩浆岩的成矿潜力巨大,形成了诸多代表性多金属矿床。根据华南地区的矿床分布时空特征,陈毓川等(2012)划分了5个具有代表性的成矿带:长江中下游成矿带(主要产出铜、铁、金、硫、铅和锌等矿产)、南岭成矿带及邻区(主要产出钨、锡、铋、钼、铌、钽、锑和铀多金属矿产)、赣东北成矿带(主要产出铜、钨、钼、铅和锌等矿产)、武夷—云开成矿带(主要产出铜、铅、锌、金、银和铁等矿产)和东南沿海成矿带(主要产出钨、锡、铜、铅、锌和银等矿产)。武功山成矿亚带属于华南南岭成矿带,发育于华南加里东期褶皱中段变质基底之上(舒良树等,1998),位于扬子板块与华夏地块的碰撞缝合带(图1),绍兴—江山—东乡—萍乡断裂南侧、赣江断裂西侧(刘珺等,2008b)。武功山地区是一个中生代花岗岩穹隆伸展构造,即变质核杂岩,该核杂岩中心位于赣江断裂与江山—萍乡断裂交会处,具三层结构,由中心至外围依次为花岗质变质核杂岩、大型拆离断层构造带和南北两侧的盆地构造(舒良树等,1998楼法生等,2002Wang et al.,2012),覆盖面积约为3 000 km2。武功山地区出露地层包括:新元古界青白口系神山群,由片岩、千枚岩和片岩化火山碎屑岩组成,夹变质基性岩;震旦系乐昌峡群坝里组及老虎塘组,坝里组主要由片岩化凝灰岩和片岩组成,老虎塘组主要由灰色变砂岩和层状硅质岩组成;寒武系牛角河组、高滩组、水石组和温汤岩组,主要为一套片岩化沉积建造;泥盆—石炭—三叠—侏罗—白垩系不整合覆盖于下古生界之上,主要岩性有砂岩、砾岩、石英岩、灰岩和泥页岩,岩石自下而上由灰白色变为红色。武功山地区经历了印支、燕山和喜山期等多期构造运动的叠加改造,断裂十分发育,岩浆活动频繁,发育有大量花岗岩体,包括武功山、山庄、麦斜、青万龙山、新泉、张佳坊、雅山和浒坑岩体。武功山成矿带产出宜春414钽铌矿床、下桐岭钨矿床、雅山钨钼矿床和浒坑钨矿床(图1)。浒坑钨矿产于武功山成矿带中武功山复式背斜东南侧燕山期的浒坑花岗岩体南缘。

图1

图1   武功山成矿带地质简图(据Li et al.,2018修改)

1.第四纪—第三纪红层和冲积物;2.上白垩统砾岩和砂砾岩;3.下侏罗统—上三叠统泥岩和砂岩;4.下三叠统—石炭系砂岩和页岩;5.泥盆系石英岩和石英砂岩;6.新元古代片状硅质岩和千枚岩;7.新元古代碳质千枚岩;8.新元古代混合岩;9.泥盆系花岗闪长岩;10.三叠系花岗岩;11.侏罗系花岗岩;12.断裂

Fig.1   Geological map of the Wugongshan metallogenic belt(modified after Li et al.,2018


1.2 浒坑矿区地质特征

浒坑钨矿位于武功山穹窿伸展构造,浒坑岩体南缘是一个大型中—高温热液石英脉型黑钨矿床。矿区内出露地层主要为震旦系老虎塘组和里坑组(图2),岩层产状平缓,整体倾向S-SE,倾角为25°~40°,岩性主要有片岩、片麻岩和混合岩,为一套低变质程度区域变质岩组合。区内发育有3条断裂,包括NE向浒—章断裂(F1)、西—丫断裂(F3)以及NNW向浒—西(F2)断裂,其中F1和F2断裂控制着矿区花岗岩边界。3条断裂构造线相交导致区内构造裂隙十分发育,裂隙主要分布在本区中部、东部和F3断裂下盘(西家垅),是矿区主要的控矿构造。武功山地区中生代花岗岩类分布广泛(图1),浒坑花岗岩体位于武功山混合岩中心位置,侵位于震旦系老虎塘组中,出露面积约为14 km2,为燕山早期晚侏罗世岩浆活动所产生,岩体走向受构造控制。

图2

图2   浒坑钨矿区地质简图(据章伟,2009修改)

1.震旦系老虎塘组片岩、片麻岩和混合岩;2.震旦系里坑组片岩和片麻岩;3.燕山早期第三次侵入白云母花岗岩;4.燕山早期第二次侵入白云母花岗岩;5.浒(坑)—章(庄)断裂;6.浒(坑)—西(家垅)断裂;7.西(家垅)—丫(山)断裂;8.大脉状石英矿脉;9.网脉状石英矿脉

Fig.2   Geological diagram of Hukeng tungsten deposit(modified after Zhang,2009


浒坑岩体主要岩石为细粒白云母花岗岩,从边缘至中心粒度逐渐过渡为中粗粒,岩性差异不大,其中过渡带的中粒—中细粒白云母花岗岩是主要的赋矿岩石。中粗粒白云母花岗岩主要造岩矿物为钾长石(35%~40%)、石英(25%~30%)、斜长石(20%~35%)和白云母(5%~10%),岩石中钾长石化和钠长石化并存,硅化和白云母化普遍发育[图3(a),3(b)]含有少量石榴石(1%);过渡相中粒—中细粒白云母花岗岩在浒坑南侧大面积分布,其典型特征为石榴石丰度升高,伴有硅化和灰岩化;细粒白云母花岗岩由石英(20%~25%)、钾长石(40%)、斜长石(30%~35%)和白云母(~3%)组成,含有石榴石、萤石、磷灰石、独居石、钛铁矿和黑钨矿。

图3

图3   浒坑钨矿床白云母花岗岩手标本和镜下照片

(a)中—粗粒白云母花岗岩手标本;(b)白云母花岗岩显微照片;(c)、(d)磷灰石背散射照片Msc-白云母;Kfs-钾长石;Pl-斜长石;Ab-钠长石;Qtz-石英;Ap-磷灰石;Zr-锆石;Xtm-磷钇矿;Mnz-独居石

Fig.3   Hand specimens and microscopic photos of muscovite granite in Hukeng tungsten deposit


含矿脉可划分为大脉状石英脉和网脉状石英脉。矿床矿化与广泛的热液蚀变带相关,蚀变矿物包括绿泥石、石英、钾长石、钠长石、电气石、萤石和绿帘石。成矿阶段可划分为:(1)石英—黑钨矿阶段;(2)石英—萤石—黑钨矿阶段;(3)石英—黄铁矿—闪锌矿—黑钨矿阶段(Liu et al.,2011)。

2 样品与方法

(1)样品及制备方法。本研究样品均采自浒坑钨矿床中—粗粒白云母花岗岩[图3(a)],样品编号为21HK01-4。首先,将样品粉碎至合适粒度,先后经摇床、淘洗、磁选和重力分选,双目镜下挑选,将分选出的锆石和磷灰石制成环氧树脂靶,并将锆石和磷灰石的颗粒剖去其厚度的一半。

(2)分析测定。首先对锆石和磷灰石样品分别拍摄背散射(BSE)[图3(c),3(d)]、阴极发光(CL)(图4)照片以揭示样品的矿物结构,然后选择合适的矿物颗粒开展测试分析,包括对锆石进行U-Pb同位素定年和微量元素分析,对磷灰石进行主量和微量元素分析。使用配备NWR 193 HE激光烧蚀系统(LA)的PE NexION 1000电感耦合等离子质谱仪(ICP-MS)进行锆石和磷灰石的微量元素测定,测定工作在东华理工大学核资源与环境国家重点实验室铀多金属中心完成。

图4

图4   浒坑钨矿白云母花岗岩锆石CL图像、U-Pb分析点位置

Fig.4   Zircon CL images and U-Pb analysis point location of muscovite granite in Hukeng tungsten deposit


在锆石微量元素分析过程中,激光光斑尺寸为30 μm,激光能量为4.6 mJ/cm2,重复频率为5 Hz。使用NIST SRM 610作为痕量元素测定的外标,详细程序参阅Li et al.(2011);锆石U-Pb同位素测定采用线性内插方式校正,每隔5个样品分析点测一次标准,年龄计算与协和图的绘制选用IsoplotR软件(Vermeesch,2018)。对于磷灰石微量元素分析,使用30 μm直径激光束、4.6 mJ/cm2激光能量和4 Hz频率以烧蚀,采用氦气作为载气。分别以NIST SRM 610和NIST SRM 612作为标样,以29Si作内标。测得原始数据采用Iolite 4软件进行处理。大多数微量元素分析的不确定度优于5%。

磷灰石主量元素测定使用JEOL JXA 8100电子探针仪器,测定单位为东华理工大学核资源与环境国家重点实验室。EPMA使用20 nA束流、15 kV加速电压和5 μm直径电子束进行定量分析。在分析过程中,首先分析F和Cl,以避免其迁移损失。详细程序参阅Xing et al.(2017)。所有原始数据均使用内部ZAF校正。分析精度为±2%~±5%。

3 结果分析

3.1 锆石U-Pb年龄

浒坑钨矿白云母花岗岩锆石LA-ICP-MS U-Pb同位素测试结果列于表1,谐和图见图5。数据显示,测年锆石U和Th含量平均值分别为223×10-6和275×10-6,Th/U值分布在0.53~1.19范围内,平均值为0.84,远大于0.1,表明样品锆石均为岩浆成因锆石(Schaltegger et al.,2005)。样品21HK01-4的206Pb/238U表面年龄均值为152.2 Ma,加权平均年龄为(152.3 ± 1.73)Ma(n=10,NSWD=0.43)(图5)。

表1   浒坑钨矿白云母花岗岩锆石LA-ICP-MS U-Pb测年结果

Table 1  LA-ICP-MS U-Pb dating results of the zircon from muscovite granite in Hukeng tungsten deposit

测点编号

Th

/(×10-6

U

/(×10-6

Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
比值1s%比值1s%比值1s%年龄/Ma1s%年龄/Ma1s%年龄/Ma1s%
21HK01-4-1265.52810.940.05522.7870.16820.6600.0244.002777.75.725145.20.557150.20.119
21HK01-4-374.941420.530.03625.5400.12625.2130.0254.8201631.43.730107.20.532158.00.150
21HK01-4-4212.62710.780.05315.6510.17815.2860.0253.181853.54.395155.10.452157.10.099
21HK01-4-7236.23340.710.04819.8150.16620.6350.0253.505564.07.182143.50.563157.00.109
21HK01-4-11240.63510.690.04513.7000.16513.9040.0232.719451.04.213147.80.387147.50.079
21HK01-4-15476.36440.740.07213.7320.23413.6670.0243.158596.56.397205.90.514153.00.096
21HK01-4-1996.421120.860.05229.7180.15425.2380.0235.0982494.16.116124.10.605149.50.151
21HK01-4-20141.61241.150.02650.8100.11744.5680.0237.3152210.97.66693.80.851147.20.213
21HK01-4-21188.32400.780.04618.4310.16118.4150.0243.2681013.64.640139.10.485150.90.098
21HK01-4-28293.72471.190.06624.2160.18921.7960.0244.8501237.96.560158.50.641151.70.145

注:s表示σ,即1s%表示误差范围为(μ-σμ+σ),2s%表示误差范围为(μ-2σμ+2σ),依此类推,具体值由微量元素处理软件Iolite 4计算得出;“-”表示因207Pb含量低而无法获得准确值

新窗口打开| 下载CSV


图5

图5   浒坑钨矿床白云母花岗岩锆石U-Pb年龄谐和图

Fig.5   U-Pb age concordia diagram of zircon from the muscovite granite in Hukeng tungsten deposit


3.2 锆石微量元素

浒坑钨矿白云母花岗岩锆石LA-ICP-MS分析结果见表2。数据显示样品中Ti含量变化范围较大,最高为20.8×10-6,部分样品含量极低,平均值为5.42×10-6,使用Ferry et al.(2007)提供的锆石Ti温度计算方法(TTi in Zircon={4 800/[5.711-0.3-log10(Ti)]}-273),得到TTi in Zircon分布在761.4~859.4 ℃之间,平均值为810.5 ℃;Hf含量较高,分布在8 202×10-6~14 774×10-6之间,平均值为10 174×10-6;Nb/Ta值分布在1.36~9.13之间,平均值约为3.47,表现为富集Nb亏损Ta。稀土元素总量(∑REE)分布在555.7×10-6~2 431.0×10-6之间,平均值为1 108×10-6;Y元素十分富集,其含量分布在640.4×10-6~3 340.0×10-6之间,平均值为1 516×10-6;稀土配分模式(图6)表现为富集HREE(Gd~Lu)(525.6×10-6~2 369.0×10-6),亏损LREE(La~Eu)(9.41×10-6~96.70×10-6),LREE/HREE比值分布在0.01~0.09之间,平均值为0.04,(Gd/Yb)N分布稳定,平均值为0.06;多数样品LREE中La和Pr含量因低于检测限而无法检出,而Ce平均值为33.3×10-6,故具有强烈正Ce异常;δEu分布在0.06~0.50之间,平均值为0.28,具有明显负Eu异常。

表2   浒坑钨矿白云母花岗岩锆石LA-ICP-MS微量元素分析结果

Table 2  LA-ICP-MS trace element analysis results of the zircon grains from muscovite granite in Hukeng tungsten deposit(×10-6)

测点编号TiT/℃YNbLaCePrNdSmEuGdTbDyHoErTmYbLuHfTaUThPb
21HK01-4-1-1 22536.19-43.99-2.596.450.9228.279.02112.1436.56158.2037.3434268.8610 6439.35281.2265.527.08
21HK01-4-29.28807.281 7006.67-35.360.292.986.722.2839.6912.70158.1057.20242.3854.6248593.709 5501.29253.0212.623.92
21HK01-4-38.24794.798073.60-22.69-1.632.860.9619.126.0870.3226.71116.9826.2024751.5710 5192.64142.174.914.57
21HK01-4-4-1 0326.35-44.99-1.113.340.8820.216.6490.8335.42149.8734.9333264.5510 2862.13271.5212.627.30
21HK01-4-5-1 0653.36-27.080.161.915.211.5421.767.7398.9936.64154.5234.6431061.029 8161.04235.5130.325.86
21HK01-4-6-8634.64-20.99--2.721.3322.916.1379.8827.61114.2329.3625554.648 9040.99185.993.741.35
21HK01-4-7-1 30710.63-46.54-1.423.411.0726.299.26112.4245.94192.0345.6441381.1010 9673.58334.4236.233.74
21HK01-4-811.22827.692 69110.771.4665.360.634.578.593.2550.0218.31230.6089.99383.8590.28822160.239 4122.91416.4318.138.37
21HK01-4-9-2 7908.36-47.410.477.0113.954.2569.6322.92267.8896.59386.7288.29795152.7310 1662.46787.8491.583.15
21HK01-4-1020.77899.571 15619.09-2.620.192.605.600.3424.618.2493.9739.86180.7545.1140081.049 9302.09279.982.275.27
21HK01-4-11-1 3856.69-46.73-1.254.501.5228.629.19123.5046.14193.6548.4743885.1011 1932.49350.6240.635.74
21HK01-4-12-1 5584.14-4.68-2.333.850.2826.669.83137.7653.43247.9357.6052899.3811 3601.28404.6184.3110.04
21HK01-4-13-3 07312.68-67.620.619.4514.534.5090.6426.07306.41106.84424.2791.79797145.4710 2772.84458.9491.246.61
21HK01-4-1414.53856.761 1543.430.2620.200.403.235.702.0233.759.63111.0740.14163.4034.8931558.339 1971.21128.586.313.02
21HK01-4-15-2 24335.300.3058.29-2.466.320.9540.4715.78205.6775.45321.3775.60656120.0812 5088.81643.6476.362.69
21HK01-4-16-1 2727.24-29.11-1.274.080.7127.678.33113.9542.95187.7143.0838673.4711 1742.95403.7187.141.10
21HK01-4-17-3 34088.860.4946.580.512.6610.391.3159.6821.57284.47107.66466.49114.061108207.8914 77419.982817.8717.6274.37
21HK01-4-18-6402.41-25.11-1.792.340.8512.173.4953.4018.8297.5025.5625757.508 6750.78443.5309.548.41
21HK01-4-1914.10853.321 1902.46-26.600.174.455.942.1128.749.50110.3240.91192.1038.8233768.308 6570.78111.796.410.33
21HK01-4-2017.36877.661 2332.36-48.28-4.367.101.7734.9810.31112.0342.17198.9635.0831663.689 7290.92123.6141.611.52
21HK01-4-2115.66865.441 9317.39-44.550.164.226.412.2538.8413.17169.2965.01335.6264.39575113.728 9461.83240.5188.322.19
21HK01-4-2217.66879.769222.29-26.180.233.554.732.0021.637.4584.7931.05154.6829.9125852.149 0350.6984.681.28.63
21HK01-4-239.59810.691 6743.23-4.430.132.115.300.6933.6111.17136.8057.31303.9661.80564118.469 9261.24291.4118.387.39
21HK01-4-24-1 4193.17-4.140.162.112.730.2826.728.86117.4851.20274.8255.95514107.789 9761.36260.7101.368.81
21HK01-4-25-1 0473.95-31.530.061.725.661.2123.967.2592.9934.06172.5934.9131063.9110 7061.52274.9161.430.49
21HK01-4-26-1 1424.20-40.33-2.485.481.0527.177.7197.5136.79188.6335.7534169.1410 2501.39246.5164.730.19
21HK01-4-27-7671.45-21.52-1.503.361.2615.025.2366.4524.53119.6425.3424652.3910 0910.57176.0140.719.19
21HK01-4-2813.29846.511 8242.650.6128.860.628.208.813.2036.7712.19142.5958.69287.1865.47623129.098 2020.78246.6293.722.39

注:“-”表示元素含量低于检测限而无法获得准确值

新窗口打开| 下载CSV


图6

图6   锆石REE球粒陨石标准化配分模式曲线(石桥数据来自Wang et al.,2022

Fig.6   Chondrite-normalized REE patterns of the zircon(Shiqiao data from Wang et al.,2022


3.3 磷灰石主量、微量元素

浒坑钨矿白云母花岗岩中磷灰石的主要成分为CaO、P2O5、F和MnO,岩体磷灰石中CaO和P2O5分布比较均一,CaO含量分布在52.53%~54.99%之间,平均值为53.69%,P2O5含量分布在41.08%~43.22%之间,平均值为41.80%。样品中F含量较高,分布在3.52%~4.09%之间,平均值为3.71%;Cl含量极低,最高值为0.012%,平均值为0.003%;MnO含量分布在0.54%~2.34%之间,平均值为1.21%;样品中Y2O3相对富集,含量分布在0.18%~0.52%之间,平均值为0.33%。另外,样品中还含有少量(≤1%)的TiO2、K2O、SO3、SrO、FeO、ThO2、Na2O、MgO和Al2O3表3),未检测出SiO2

表3   浒坑钨矿白云母花岗岩磷灰石电子探针分析结果

Table 3  EPMA analysis results of the apatite grains from muscovite granite in Hukeng tungsten deposit(%)

测点编号CaOP2O5TiO2K2OMnOFClSO3SrOFeOThO2Y2O3Na2OMgOAl2O3Total
21HK01-4-0154.2141.08-0.0041.003.540.0040.0280.0040.010.0270.280.20-0.04098.94
21HK01-4-0454.3141.44-0.0080.543.830.0030.0120.007--0.180.12-0.00698.84
21HK01-4-0552.9441.50-0.0031.433.840.0120.026-0.030.0050.300.25--98.72
21HK01-4-0753.0941.65--1.483.620.0030.032-0.010.0350.380.210.008-98.98
21HK01-4-0853.8141.790.00-1.283.560.0010.0280.0120.030.0210.360.20-0.01099.61
21HK01-4-1052.9441.240.03-1.273.63-0.030-0.030.0080.490.230.013-98.39
21HK01-4-1154.9942.70--0.753.62---0.03-0.220.040.0040.001100.84
21HK01-4-1353.8942.110.010.0071.053.77-0.013-0.070.0190.340.150.0120.02299.87
21HK01-4-1454.2141.270.03-0.773.65-0.013-0.03-0.280.16-0.07398.94
21HK01-4-1552.9541.72--1.703.780.0040.0450.0120.020.0160.320.210.008-99.19
21HK01-4-1752.5342.220.01-2.343.520.003-0.0010.03-0.520.21--99.90
21HK01-4-1853.1741.75--1.643.540.0080.035---0.380.280.0010.00599.31
21HK01-4-1954.3143.220.02-0.674.090.0030.0230.0010.010.0180.260.17-0.007101.06
21HK01-4-2054.3341.52--0.983.93-0.020-0.030.0180.350.16-0.00799.70

注:“-”表示元素含量低于检测限而无法获得准确值

新窗口打开| 下载CSV


浒坑钨矿白云母花岗岩磷灰石微量元素数据详见表4。LA-ICP-MS分析数据显示,磷灰石样品中Mn含量最高,分布在5 081×10-6~13 948×10-6之间,平均值为7 949×10-6;Sr含量比较贫,分布在58.8×10-6~108.8×10-6之间,平均值为79.3×10-6。磷灰石中稀土元素含量较高,∑REE分布在3 835×10-6~10 721×10-6之间,平均值为7 271×10-6,Y元素较富集,分布在1 509×10-6~5 081×10-6之间,平均值为3 301×10-6;按稀土元素三分法,其LREE(La~Nd)含量分布在1 071×10-6~4 873×10-6之间,平均值为3 222×10-6,MREE(Sm~Ho)含量分布在2 150×10-6~6 470×10-6之间,平均值为4 239×10-6,HREE(Er~Lu)含量分布在77.0×10-6~3 518.0×10-6之间,平均值为867.9×10-6,三者平均值的比值LREE∶MREE∶HREE ≈ 3.7∶4.9∶1.0,(Sm/Yb)N平均值为27.51,(La/Yb)N平均值为4.04,表现为富集LREE和更富集MREE,相对亏损HREE。δEu分布在0.03~0.09之间,平均值为0.06,具有稳定的强烈负Eu异常。稀土元素配分模式图上呈现为“M”型特征曲线(图7)。

表4   浒坑钨矿白云母花岗岩磷灰石LA-ICP-MS微量元素分析结果

Table 4  LA-ICP-MS trace element analysis results of the apatite grains from muscovite granite in Hukeng tungsten deposit(×10-6

测点编号NaMgMnFeGaAsSrYLaCePrNdSmEuGdTbDyHoErTmYbLuPbThU
21HK01-4-011 2908.48 59620315.30.0889.983 1863221 1892171 1391 087331 41221995810119219.39410.312.57.51.08
21HK01-4-021 64111.59 37335817.115.8771.844 1433761 5192701 3661 319231 7382881 11111218416.5625.412.717.32.95
21HK01-4-059718.36 191904.65.4084.442 094196843162947815201 02913951051816.9302.810.92.40.32
21HK01-4-061 3138.67 9022849.911.3592.432 8862861 1442101 1281 089271 5092328568312010.4403.713.44.80.65
21HK01-4-071 3046.88 56824410.315.9468.183 1082781 1682201 1591 146231 4732148608513210.4444.211.95.90.85
21HK01-4-081 0859.45 3672478.71.7472.252 5882369631891 003993221 291187681651038.3293.010.62.60.56
21HK01-4-105219.66 4011843.84.31108.821 5095835088574802151 09117455847574.5150.915.7--
21HK01-4-111 29810.68 84724310.24.7973.843 1422891 1512071 1011 147241 5342388898013010.3403.613.08.32.13
21HK01-4-131 91614.99 18022315.57.6358.804 5013601 4132621 3951 864222 6374221 41511115713.6473.212.618.25.72
21HK01-4-141 5459.37 9363196.91.2978.713 4933491 3332381 2941 269281 7802831 14111218916.1665.912.010.51.99
21HK01-4-151 5248.28 6533709.19.7473.973 6342981 2072381 2601 346231 7612751 0159515313.4484.910.94.20.71
21HK01-4-161 2347.55 44120411.65.37107.533 2562911 0661981 031941331 3022211 01011922824.411912.19.016.31.43
21HK01-4-171 3978.29 9633328.712.3690.453 3383071 1632271 2201 227271 5922208438113410.6424.014.34.41.00
21HK01-4-181 6528.37 86517510.8-65.894 2223871 4162561 2621 191221 6422761 12911720116.8716.812.427.63.81
21HK01-4-201 4597.38 31220314.01.5370.573 5143541 3482421 2771 175231 5682449479615813.1575.812.215.62.18
21HK01-4-219757.36 30734811.235.5383.942 9633951 3352301 170981271 33121394410621420.5938.69.831.42.14
21HK01-4-221 46424.113 9481 01116.011.9571.543 3943111 2922601 2861 549232 043301969821229.7403.516.64.50.64
21HK01-4-248515.96 6932764.03.5261.731 9642239741891 0217631282610340739655.9272.59.52.0-
21HK01-4-251 60612.612 55065513.88.0498.064 2463561 3872561 3091 498272 0483131 22111418815.7575.019.45.60.49
21HK01-4-261 5578.5638616512.119.3780.663 7563251 3492441 3041 306251 7442741 13311420318.6747.511.347.43.79
21HK01-4-271 2878.56 317839.20.9178.692 7052901 1922231 1191 090251 418211808761218.6353.012.716.82.23
21HK01-4-281 6008.86 96617612.29.9178.523 5123791 3842501 2451 231351 6772861 24013524320.7958.612.236.83.35
21HK01-4-301 3457.55 08113710.83.2869.622 9843061 1782191 1211 049201 4002158428313711.4453.710.122.83.36
20HK01-4-312 1279.07 92527517.210.5071.935 0815632 0363441 6241 575272 0783541 49216229529.313012.511.345.05.59

注:“-”表示元素含量低于检测限而无法获得准确值

新窗口打开| 下载CSV


图7

图7   磷灰石REE球粒陨石标准化配分模式曲线

注:S型花岗岩数据据Sha et al.(1999);标准化值据Sun et al.(1989)

Fig.7   Chondrite-normalized REE patterns of the apatite


4 讨论

4.1 成岩成矿时代

本文获得白云母花岗岩锆石样品U-Pb测年结果为(152.3±1.73)Ma(图5),表明花岗岩属于燕山期晚侏罗世岩浆活动产物,这一结果与前人获得的成岩年龄基本一致。其中,江西省地质矿产勘查开发局(1984)最早提供了较为准确的成岩时代,并利用K-Ar法将其限定在150.2~169.1 Ma范围;刘珺等(2008b)在浒坑花岗岩体-60 m标高获得白云母花岗岩的U-Pb年龄为(151±2.6)Ma。对于浒坑钨矿床的成矿时代,刘珺等(2008a)在浒坑钨矿床-10 m中段获得石英脉中辉钼矿的Re-Os年龄为(150.2±2.2)Ma,在误差范围内与本文获得的白云母花岗岩结果相当,因此白云母花岗岩为成矿花岗岩。由此说明,浒坑矿床的成岩成矿时代为晚侏罗世。前人研究表明,晚侏罗世持续至早白垩世是江西省南岭成矿带和钦杭成矿带一次重要的成岩成矿阶段,该阶段形成了江南造山带大片区的花岗岩成矿,包括南岭成矿带中葛仙山序列和西华山序列与钨、锡、稀有金属和稀土矿产有关的S型(或高分异S型)花岗岩(江西省地质矿产勘查开发局,2014Song et al.,2022);钦杭结合带组合与铜、钨、钼等金属矿产有关的壳幔同熔Ⅰ型花岗斑岩(Wang et al.,2015Mao et al.,2017)以及扬子板块内的城门山和银山Ⅰ型潜火山杂岩(Yan et al.,2021),此阶段对应毛景文等(2008)所描述的160~150 Ma华南与花岗岩有关的钨锡多金属成矿阶段。

4.2 花岗岩类型

相比A型花岗岩,S型花岗岩更难与Ⅰ型花岗岩区分,特别是长英质岩浆源的Ⅰ型花岗岩,它们都是壳源火成岩,关键在于识别其岩浆源岩是沉积岩还是火成岩。磷灰石中可以包含微量元素,不同类型花岗岩的磷灰石往往具有不同模式的元素含量或比例(Chappell et al.,19922001Sha et al.,1999Mao et al.,2016Sun et al.,2021),通过分析其中特征元素的系统性差异,可以在一定程度上辨别主岩的成因类型。从磷灰石成分来看,与Ⅰ型花岗岩相比,S型花岗岩的磷灰石通常具有更高的F含量和更低的Cl含量(Sha et al.,1999Piccoli et al.,2002),因为Cl挥发性高于F,且更倾向于分配在流体中,因此S型花岗岩中磷灰石的F相对富集和Cl相对缺失,被解释为Cl在沉积源岩的风化过程中强烈损失(Sha et al.,1999Teiber et al.,2014Li et al.,2020)。高度结晶分异也会增加F降低Cl,导致结晶相中出现更高的F/Cl比值(Pan et al.,2002Doherty et al.,2014)。通过磷灰石的Ce-Y投点和Sr-Nd/Nd*投点[图8(a),8(b)]显示浒坑岩体为S型花岗岩,符合形成大陆环境的前提。

图8

图8   浒坑钨矿磷灰石Sr-Nd/Nd*图解(a)(底图据张晓兵,2020)和Ce-Y图解(b)(底图据Laurent et al.,2017

Fig.8   Apatite Sr-Nd/Nd* ratio(a)(base map modified after Zhang,2020) and apatite Ce-Y ratio(b)(base map modified after Laurent et al.,2017) of Hukeng tungsten deposit


对比Sha et al.(1999)对来自S型花岗岩的磷灰石微量元素含量研究结果,本研究的REE+Y模式与之差异不大,La/Y比值平均为0.10,在其统计范围(0.05~0.29)内,Sm/Nd比值平均为1.01,高于镁铁质Ⅰ型花岗岩统计最大值(0.27)。本研究稀土元素球粒陨石标准化配分模式图呈中间凸起并右倾的“M”型,反映的磷灰石对应于澳大利亚Lachlan褶皱带(Sha et al.,1999)中的S型花岗岩的磷灰石(图7),且均具有强烈的Eu异常和Nd亏损异常。Eu异常被解释为磷灰石Ca2+位对Eu3+的偏好而非Eu2+,在S型花岗岩的低氧逸度条件下,显然会出现Eu3+的大量损失(张绍立等,1985);此外,Eu的其他载体矿物(如斜长石等)早期结晶的影响也可能使磷灰石中的Eu含量变低(Bea et al.,1994),这些综合因素导致S型花岗岩中磷灰石REE模式出现比Ⅰ型花岗岩更强烈的Eu负异常。不同的是,本研究中磷灰石REE模式表现为“M”型,亏损LREE和HREE。鉴于锆石Th/U比值平均为0.84,高于0.5,为典型的岩浆成因锆石(Schaltegger et al.,2005),故本文将磷灰石HREE的亏损解释为岩浆/熔体高度结晶分异的结果,而不是对源岩REE含量特征的简单继承。在S型岩浆中,独居石较磷灰石更稳定且溶解度更低(Watson et al.,1981Pan et al.,2002),由于独居石的早期结晶带走了硅酸盐熔体中以La和Ce为主的LREE(Virgo et al.,1980),所以会出现S型花岗岩中LREE的上升模式;独居石的早期结晶也可以解释Nd的负异常,因为独居石的REE分配系数在Nd处具有最大值,故可能更优先富集Nd,导致熔体中的Nd被消耗(Stepanov et al.,2012)。综合得出,磷灰石的LREE上升和HREE陡峭下降且具有Eu和Nd负异常的“M”型模式是由独居石和锆石等富REE矿物相的早期高度结晶造成的,而高度结晶分异的结果则是由S型花岗岩的地球化学性质和副矿物组合特征共同形成。

4.3 岩浆氧化还原状态和挥发分

(1)岩浆氧化状态。锆石是大多数火成岩中存在的主要矿物,是全岩中U、Th、Hf和REEs的重要结晶分异相(Belousova et al.,2002b2010Hoskin et al.,2003)。Ce和Eu具有变价性质,锆石中的Ce和Eu元素丰度往往可以反映岩浆的氧化还原条件(Chen et al.,2021Wang et al.,2022Loader et al.,2022)。然而,Eu异常可能来自非锆石矿物的影响,如斜长石,其是花岗岩浆中的常见矿物,斜长石的结晶分异会带走熔体中的Eu(Bea et al.,1994),从而使(Eu/Eu*)N降低。尽管Ce异常也会受到其他富REE相矿物的影响,但通常地壳中的Ce很少以Ce4+(<0.1%)形式存在(Loader et al.,20172022),因此矿物的分离结晶对于锆石中Ce异常的影响较小。因此,可以使用锆石中的Ce异常和Eu异常综合评价岩浆的相对氧化还原状态。

Ce和Eu的异常通常使用(Ce/Ce*)N和(Eu/Eu*)N来表现,其中Ce*=LaN·PrN,Eu*=SmN·GdN。需要考虑的是,锆石中的LREE(尤其是La和Pr)通常具有非常低的含量,甚至大多低于检测限(Hoskin et al.,2003),导致Ce*无法获得,Loader et al.(2017)通过研究表明可以使用(NdN2/SmN计算Ce*以避免此类情况。本研究采取Loader et al.(2017)的方法。样品锆石微量元素数据显示,(Ce/Ce*)N平均值为81.95,(Eu/Eu*)N平均值为0.35,表现出强烈Ce正异常和Eu负异常,与来自石桥的花岗闪长岩(Wang et al.,2022)REE模式图高度一致(图6)。使用ln (Ce/Ce*)=0.1156±0.0050×ln fO2+13 860 ±708/T(K)-6.125±0.484Trail et al.,2012)计算锆石形成时的log(fO2),在log(fO2)-TTi-in-zircon图中,样品落入FMQ与IW缓冲区内[图9(a)],表明锆石形成时岩浆氧逸度较低。近年来,Loucks et al.(2020)提出了利用锆石中Ce、U和Ti计算锆石结晶时的岩浆氧化还原条件,公式为log fO2(样品)-log fO2(FMQ)=3.998(±0.124)×log Ce /Ui×Ti+2.284(±0.101)。本文基于此公式,得出样品FMQ分布在 -3.60~+2.33之间,平均值为0.82,通过对比Wang et al.(2022)的数据发现,本研究与石桥花岗岩闪长岩氧逸度条件差异不大[图9(b)],为低氧逸度环境,形成温度整体较高(平均为810 ℃),验证了锆石为岩浆早期结晶相。

图9

图9   锆石氧逸度缓冲液判别图(a)(底图据Trail et al.,2012)和FMQ-T图解(b)(石桥数据来自Wang et al.,2022

Fig.9   Zircon oxygen fugacity buffer discrimination diagram(a)(base map modified after Trail et al.,2012) and zircon FMQ-T ratio(b)(Shiqiao data from Wang et al.,2022


磷灰石中的Ce、Eu、S和Mn是氧化还原敏感元素(Belousova et al.,2002aCao et al.,2012Miles et al.,2014Marks et al.,20122016Sadove et al.,2019)。基于元素置换邻近原则,即离子半径差异越小,越容易发生置换,磷灰石中的Ca2+位更倾向于被Eu3+和Ce3+占据,而不是Eu2+和Ce4+。因此,在磷灰石的稀土元素配分模式中,更容易看到Eu的负异常,而Ce异常几乎没有(Cao et al.,2012),这表明磷灰石中的Eu异常可以有效反映岩浆的氧化还原状态。浒坑样品磷灰石中的强烈Eu负异常表明浒坑花岗岩处于低氧逸度条件。S在岩浆中广泛分布,在流体/熔体中S主要是以SO42-(Ⅵ)存在,而本研究的磷灰石中w(SO3)平均值为0.025%(表4),含量较低,被解释为在S型花岗岩浆中,高价态的S被还原为S2-,结晶时会以硫化物形式沉淀脱离流体/熔体,这不仅解释了磷灰石中S含量较低,而且也能解释S型花岗岩中丰富的硫化物的出现(Sha et al.,1999Wang et al.,2019)。磷灰石中的Mn可能与母岩浆的结晶分异程度和氧化还原条件有关(韩丽等,2016Miles et al.,2014Marks et al.,2016Chen et al.,2021)。Mn具有多价态,通常低价态的Mn更容易被磷灰石中Ca1位置所接受。Miles et al.(2014)认为磷灰石中的Mn浓度基本不继承岩浆/熔体的Mn浓度,可以简单认为磷灰石中Mn浓度变化是与氧逸度呈负相关的函数,并提出了利用Mn浓度计算氧逸度的经验公式。然而,Marks et al.(2016)对该方法的局限性进行了说明,因为如温度、熔体分异和其他含锰矿物的沉淀等因素均会对Mn含量产生一定影响(Webster et al.,2009)。此外,有研究提出Mn含量会随着熔体分异程度的升高而增加(O’sulliva et al.,2020)。故本文研究的磷灰石具有非常高的Mn含量(5 081×10-6~10 948×10-6)可能是由低氧化态或熔体的高度结晶分异导致。

(2)岩浆挥发分。磷灰石[A5(XO43Z]在长英质岩浆中结晶时间较早,其中Z配位常加入F、Cl和H等挥发性元素,因此磷灰石常被用来作为熔体挥发分的指示工具(Pan et al.,2002)。在脱气过程中,相比F,Cl更容易被分配到气相中(Piccoli et al.,2002)。浒坑磷灰石EPMA数据显示,样品的F/Cl比值极高,F/Cl比值的变化可能是由于岩浆分异过程中卤素的损失,这也同时影响着全岩的F/Cl比值。F和Cl在磷灰石和岩浆中的分配系数分别为11~40(Webster et al.,2009)和3~32(Doherty et al.,2014),在岩浆结晶分异过程中磷灰石的F和Cl含量会同时增加,而F的加入会延长岩浆演化过程,这给包括石英、斜长石、钾长石、磷灰石和锆石等矿物的多元素结晶分异以充足时间。由于Cl在水相中具有非常高的溶解度,Cl的损失很可能是在源沉积岩风化过程中发生的。在样品的岩相学中,发现不少产于磷灰石周围的萤石晶体,证明母岩浆中富含F。富含萤石的花岗岩是高度结晶分异和流体丰富的,表明磷灰石是在挥发—过饱和阶段形成的(Qu et al.,2019)。REEs通常与F-形成稳定的络合物,相比流体,REE+F会优先分布在熔体中(Teiber et al.,2014Chen et al.,2014),这能解释样品中较高的∑REE值(3 835×10-6~10 721×10-6)。

长英质岩浆富F会使得岩浆的固相线温度(450~550 ℃)和黏度降低,从而延长岩浆的演化过程,这也是岩浆发生高度结晶分异的原因之一(Irber,1999)。此外,高F/Cl相矿物往往受到强流体作用或高温影响(Piccoli et al.,2002)。在结晶完成后几乎不可能受到高温影响,岩相学也没有重熔的证据,故认为浒坑花岗岩可能在岩浆结晶分异后期与流体发生强烈作用。

4.4 对成岩成矿的指示

金属是否在硅酸盐熔体中富集成矿主要取决于熔体环境能否使金属元素形成牢固的配合物。W易与氧结合形成络阴离子WO42-,因WO42-体积较大,因此难以进入矿物晶格,导致W在残留熔体中富集并与Fe、Mn和Ca等阳离子结合成黑钨矿或白钨矿后沉淀成矿。W在熔体中的富集还与体系中的F和H2O有关,有研究认为,F的存在会使W在岩浆演化中倾向进入熔体(Keppler et al.,1991),并形成W的氟氧络合物(韩丽等,2016),而富F的浒坑S型花岗岩显然有利于W在晚期残余熔体中富集。W的最终成矿往往是以WO42-形式存在,这就要求晚期熔体与流体的强烈作用以及系统内的低氧逸度条件,因为在低氧逸度条件下,Fe、Mn变价离子以Fe2+、Mn2+低价状态存在,与WO42-结合形成钨铁矿和钨锰矿(黑钨矿,[(Mn、Fe)WO4]),当围岩环境中富Ca时,将会形成白钨矿(CaWO4)。本研究中磷灰石和锆石的微量元素特征表明,浒坑岩体在浅地表受到强流体作用且体系内处于相对还原环境,Mn主要以Mn2+形式存在,易与WO42-结合形成黑钨矿(MnWO4)。

当长英质熔体中有流体介入时,容易形成石英脉。有研究表明,浒坑地区岩浆侵入频繁且有多期成矿流体介入(刘珺等,2010),导致区内石英脉花岗岩广泛分布,且在岩体形成前后分别有韧性剪切和脆性变形的应力作用(章伟,2009陈懋弘等,2009),进而导致岩体产状多样,块状和条带状石英与复脉组不均匀分布,从而造成浒坑岩体的独特性。

5 结论

(1)通过对来自浒坑白云母花岗岩中的锆石进行U-Pb定年,获得浒坑钨矿的成岩年龄为(152.3±1.73)Ma。

(2)通过对来自浒坑白云母花岗岩中锆石和磷灰石开展元素地球化学研究,得到浒坑岩体为典型的高分异S型花岗岩,具有低氧逸度的特征。

(3)通过研究来自浒坑白云母花岗岩中磷灰石的F和Cl等反应挥发分的元素,得到浒坑岩体母岩浆为富F相,经历了高度的结晶分异,且在浅部地壳与流体发生强烈的作用。

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-6-848.shtml

参考文献

Bea FPereira M DStroh A1994.

Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)

[J].Chemical Geology,117(1/2/3/4):291-312.

[本文引用: 2]

Belousova E AGriffin W LO’Reilly S Yet al2002a.

Apatite as an indicator mineral for mineral exploration:Trace-element compositions and their relationship to host rock type

[J].Journal of Geochemical Exploration,761):45-69.

[本文引用: 1]

Belousova E AGriffin W LO’Reilly S Yet al2002b.

Igneous zircon:Trace element composition as an indicator of source rock type

[J].Contributions to Mineralogy and Petrology,1435):602-622.

[本文引用: 1]

Belousova E AKostitsyn Y AGriffin W Let al2010.

The growth of the continental crust:Constraints from zircon Hf-isotope data

[J].Lithos,1193/4):457-466.

[本文引用: 1]

Bureau of Geology and Mineral Exploration and Development of Jiangxi Province1984.The Reginal Geology of Jiangxi,China[M].BeijingGeological Publishing House.

Bureau of Geology and Mineral Exploration and Development of Jiangxi Province2014.The Mineral Geological Records of China—Volume of Jiangxi Province[M].BeijingGeological Publishing House.

Cao MLi GQin Ket al2012.

Major and trace element characteristics of apatites in granitoids from Central Kazakhstan:Implications for petrogenesis and mineralization

[J].Resource Geology,621):63-83.

[本文引用: 3]

Chappell B WWhite A J R1992.

I- and S-type granites in the Lachlan Fold Belt

[J].Earth and Environmental Science Transactions of the Royal Society of Edinburgh,831/2):1-26.

[本文引用: 1]

Chappell B WWhite A J R2001.

Two contrasting granite ty-pes:25 years later

[J].Australian Journal of Earth Sciences,484):489-499.

[本文引用: 1]

Chen BMa XWang Z2014.

Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization

[J].Journal of Asian Earth Sciences,93301-314.

[本文引用: 1]

Chen MaohongZhang WeiXiang Junfenget al2009.

Characteristics of the ore bearing ductile shear zones at Hukeng tungsten deposit and 40Ar-39Ar geochronological constraints

[J].Journal of Guilin University of Technology,292):195-206.

Chen XHuang WChen Let al2021.

Controlling factors of different Late Cretaceous granitoid-related mineralization between western margin of the Yangtze Block and the nei-ghbor Yidun arc

[J].Ore Geology Reviews,139104554.

[本文引用: 2]

Chen YuchuanWang Denghong2012.

Four main topics concerning the metallogeny related to Mesozoic magmatism in South China

[J].Geotectonica et Metallogenia,363):315-321.

Doherty A LWebster J DGoldoff B Aet al2014.

Partitioning behavior ofchlorine and fluorine in felsic melte-fluid (s)-apatite systems at 50 MPa and 850-950 ℃

[J].Chemical Geology,38494-111.

[本文引用: 2]

Ferry J MWatson E B2007.

New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers

[J].Contributions to Mineralogy and Petrology,1544):429-437.

[本文引用: 1]

Guo LingzhiShi YangshenMa Ruishi1983.

On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the Western Pacific Ocean

[J].Acta Geologica Sinica,(1):11-21.

Guo LingzhiShi YangshenMa Ruishiet al1984.

Tectonostratigraphic Terranes of Southeast China

[J].Journal of Nanjing University(Natural Science),(4):732-739.

Han LiHuang XiaolongLi Jieet al2016.

Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit,Jiangxi Province,South China

[J].Acta Petrologica Sinica,323):746-758.

Hoskin P W O2005.

Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia

[J].Geochimica et Cosmochimica Acta,693):637-648.

[本文引用: 1]

Hoskin P W OSchaltegger U2003.

The composition of zircon and igneous and metamorphic petrogenesis

[J].Reviews in Mineralogy and Geochemistry,531):27-62.

[本文引用: 2]

Irber W1999.

The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu∗,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites

[J].Geochimica et Cosmochimica Acta,633/4):489-508.

[本文引用: 1]

Jia JDu XZhao Ket al2022.

Sources of K-bentonites across the Ordovician-Silurian transition in South China:Implications for tectonic activities on the northern and southern margins of the South China Block

[J].Marine and Petroleum Geology,139105599.

[本文引用: 1]

Keppler HWyllie P J1991.

Partitioning of Cu,Sn,Mo,W,U,and Th between melt and aqueous fluid in the systems haplogranite-H2O- HCl and haplogranite-H2O- HF

[J].Contributions to Mineralogy and Petrology,1092):139-150.

[本文引用: 1]

Laurent OZeh AGerdes Aet al2017.

How do granitoid magmas mix with each other? Insights from textures,trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton(South Africa)

[J].Contributions to Mineralogy and Petrology,1729):1-22.

[本文引用: 2]

Li HZhang HLing M Xet al2011.

Geochemical and zircon U-Pb study of the Huangmeijian A-type granite:Implications for geological evolution of the Lower Yangtze River belt

[J].International Geology Review,535/6):499-525.

[本文引用: 1]

Li J LSchwarzenbach E MJohn Tet al2021a.

Subduction zone sulfur mobilization and redistribution by intraslab fluid-rock interaction

[J].Geochimica et Cosmochimica Acta,29740-64.

[本文引用: 1]

Li JHuang X LFu Qet al2021b.

Tungsten mineralization during the evolution of a magmatic-hydrothermal system:Mineralogical evidence from the Xihuashan rare-metal granite in South China

[J].American Mineralogist:Journal of Earth and Planetary Materials,1063):443-460.

[本文引用: 1]

Li WChakraborty SNagashima Ket al2020.

Multicomponent diffusion of F,Cl and OH in apatite with application to magma ascent rates

[J].Earth and Planetary Science Letters,550116545.

[本文引用: 1]

Li XYi XHuang Cet al2018.

Zircon U-Pb,molybdenite Re-Os and muscovite Ar-Ar geochronology of the Yashan W-Mo and Xiatongling W-Mo-Be deposits:Insights for the duration and cooling history of magmatism and mineralization in the Wugongshan district,Jiangxi,South China

[J].Ore Geology Reviews,1021-17.

[本文引用: 2]

Liu JMao JYe Het al2011.

Geology,geochemistry and age of the Hukeng tungsten deposit,southern China

[J].Ore Geology Reviews,431):50-61.

[本文引用: 2]

Liu JunMao JingwenYe Huishouet al2008a.

Zircon LA-ICPMS U-Pb dating of Hukeng granit in Wugongshan area,Jiangxi Province and its geochemical characteristics

[J].Acta Petrologica Sinica,248):1813-1822.

Liu JunXie GuiqingShi Guodonget al2010.

Characteristics of ore-forming fluid of Hukeng tungsten deposit in Wugongshan area

[J].Mineral Deposit,29Supp.1):589-590.

[本文引用: 1]

Liu JunYe HuishouXie Guiqinget al2008b.

Re-Os dating of molybdenite from the Hukeng tungsten deposit in the Wugongshan area,Jiangxi Province,and its geological implications

[J].Acta Geologica Sinica,(11):1572-1579.

Liu YGao SHu Zet al2010.

Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths

[J].Journal of petrology,511/2):537-571.

Loader M ANathwani C LWilkinson J Jet al2022.

Controls on the magnitude of Ce anomalies in zircon

[J].Geochimica et Cosmochimica Acta,328242-257.

[本文引用: 3]

Loader M AWilkinson J JArmstrong R N2017.

The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility

[J].Earth and Planetary Science Letters,472107-119.

[本文引用: 4]

Lou FashengShu LiangshuYu Jinhaiet al2002.

Petrological and geochemical characteristics and origin of the Wugongshan Dome Granit,Jiangxi Province

[J].Geological Review,(1):80-88.

Loucks R RFiorentini M LHenríquez G J2020.

New magmatic oxybarometer using trace elements in zircon

[J].Journal of Petrology,613):egaa034.

[本文引用: 1]

Mao JLiu PGoldfarb R Jet al2021.

Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension,East Asia

[J].Ore Geology Reviews,136104270.

[本文引用: 1]

Mao JPirajno FCook N2011.

Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue

[J].Ore Geology Reviews,431):1-7.

[本文引用: 2]

Mao JXiong BLiu Jet al2017.

Molybdenite Re/Os dating,zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt),China:Implications for petrogenesis,mineralization and geodynamic setting

[J].Lithos,28635-52.

[本文引用: 1]

Mao JingwenXie GuiqingGuo Chunliet al2008.

Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings

[J].Geological Journal of China Universities,144):510-526.

Mao MRukhlov A SRowins S Met al2016.

Apatite trace element compositions:A robust new tool for mineral exploration

[J].Economic Geology,1115):1187-1222.

[本文引用: 1]

Marks M A WScharrer MLadenburger Set al2016.

Comment on“Apatite:A new redox proxy for silicic magmas?”[Geochimica et Cosmochimica Acta 132 (2014) 101-119]

[J].Geochimica et Cosmochimica Acta,183267-270.

[本文引用: 3]

Marks M A WWenzel TWhitehouse M Jet al2012.

The volatile inventory (F,Cl,Br,S,C) of magmatic apatite:An integrated analytical approach

[J].Chemical Geology,291241-255.

[本文引用: 1]

Miles A JGraham C MHawkesworth C Jet al2014.

Apatite:A new redox proxy for silicic magmas?

[J].Geochimica et Cosmochimica Acta,132101-119.

[本文引用: 3]

O’Sullivan GChew DKenny Get al2020.

The trace element composition of apatite and its application to detrital provenance studies

[J].Earth-Science Reviews,201103044.

Pan YFleet M E2002.

Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors

[J].Reviews in Mineralogy and Geochemistry,481):13-49.

[本文引用: 3]

Piccoli P MCandela P A2002.

Apatite in igneous systems

[J].Reviews in Mineralogy and Geochemistry,481):255-292.

[本文引用: 3]

Qu PLi N BNiu H Cet al2019.

Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range,NE China

[J].Lithos,348105207.

[本文引用: 1]

Qu PNiu H CWeng Qet al2022.

Apatite and zircon geochemistry for discriminating ore-forming intrusions in the Luming giant porphyry Mo deposit,northeastern China

[J].Ore Geology Reviews,143104771.

Ren Jishun1990.

On the geotectonics of southern China

[J].Acta Geologica Sinica,(4):275-288.

Sadove GKonecke B AFiege Aet al2019.

Structurally bound S2-,S1-,S4+,S6+ in terrestrial apatite:The redox evolution of hydrothermal fluids at the Phillips mine,New York,USA

[J].Ore Geology Reviews,1071084-1096.

[本文引用: 1]

Schaltegger UPettke TAudétat Aet al2005.

Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW,Australia):Part I:Crystallization of zircon and REE-phosphates over three million years—A geochemical and U-Pb geochronological study

[J].Chemical Geology,2203/4):215-235.

[本文引用: 2]

Sha L KChappell B W1999.

Apatite chemical composition,determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry,as a probe into granite petrogenesis

[J].Geochimica et Cosmochimica Acta,6322):3861-3881.

[本文引用: 7]

Shi YangshenShu LiangshuGuo Lingzhiet al1995.

On Plate Collision KIinematics:Taking the Jiangnan and the Eastern Tianshan Orogenic Belts as Examples

[J].Geological Journal of China Universities,(1):11-21.

Shu Liangshu2012.

An analysis of principal features of tectonic evolution in South China Block

[J].Geological Bulletin of China,317):1035-1053.

Shu LiangshuSun YanWang Deziet al1998.

Mesozoic extensional structure of Wugongshan in South China

[J].Science in China(Series D:Earth Sciences),(5):431-438.

Song Z TXu X S2022.

Petrogenesis of high-maficity S-type granites:Insight from the early Paleozoic Jinxi granite,South China

[J].Lithos,412/413106597.

[本文引用: 1]

Stepanov A SHermann JRubatto Det al2012.

Experimental study of monazite/melt partitioning with implications for the REE,Th and U geochemistry of crustal rocks

[J].Chemical Geology,300200-220.

[本文引用: 1]

Su S QQin K ZLi G Met al2021.

Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit,South China

[J].American Mineralogist:Journal of Earth and Planetary Materials,1069):1503-1519.

[本文引用: 2]

Sun J FYang J HZhang J Het al2021.

Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis

[J].Chemical Geology,566120104.

[本文引用: 1]

Sun S SMcDonough W F1989.

Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes

[J].Geological Society,London,Special Publications,421):313-345.

[本文引用: 1]

Teiber HMarks M A WWenzel Tet al2014.

The distribution of halogens (F,Cl,Br) in granitoid rocks

[J].Chemical Geology,37492-109.

[本文引用: 2]

Trail DWatson E BTailby N D2012.

Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas

[J].Geochimica et Cosmochimica Acta,9770-87.

[本文引用: 3]

Vermeesch P2018.

IsoplotR:A free and open toolbox for geochronology

[J].Geoscience Frontiers,95):1479-1493.

[本文引用: 1]

Virgo DMysen B OKushiro I1980.

Anionic constitution of 1-atmosphere silicate melts:Implications for the structure of igneous melts

[J].Science,2084450):1371-1373.

[本文引用: 1]

Wang DShu L2012.

Late Mesozoic basin and range tectonics and related magmatism in southeast China

[J].Geoscience Frontiers,32):109-124.

[本文引用: 1]

Wang DWang X LCai Yet al2022.

Exploring the Sn-W metallogenic potential of Late Jurassic Ganfang-Guyangzhai granite suite,South China:Zircon and apatite geochemistry

[J].Ore Geology Reviews,144104863.

[本文引用: 7]

Wang H ZChen P RSun L Qet al2015.

Magma mixing and crust-mantle interaction in Southeast China during the Early Cretaceous:Evidence from the Furongshan granite porphyry and mafic microgranular enclaves

[J].Journal of Asi-an Earth Sciences,11172-87.

[本文引用: 1]

Wang TLi GWang Qet al2019.

Petrogenesis and metallogenic implications of Late Cretaceous I-and S-type granites in Dachang-Kunlunguan ore belt,southwestern South China Block

[J].Ore Geology Reviews,113103079.

[本文引用: 2]

Watson E BGreen T H1981.

Apatite/liquid partition coefficients for the rare earth elements and strontium

[J].Earth and Planetary Science Letters,56405-421.

[本文引用: 1]

Webster J DTappen C MMandeville C W2009.

Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid.II.Felsic silicate systems at 200 MPa

[J].Geochimica Cosmochimica Acta,733):559-581.

[本文引用: 2]

Wu FujiangZhang Fangrong2003.

Features and genesis of Caledonian granites in the Wugongshan in the eastern segment of the northern maring of South China plate

[J].Geology in China,(2):166-172.

Xing C MWang C Y2017.

Cathodoluminescence images and trace element compositions of fluorapatite from the Hongge layered intrusion in SW China:A record of prolonged crystallization and overprinted fluid metasomatism

[J].American Mineralogist:Journal of Earth and Planetary Materials,1027):1390-1401.

[本文引用: 1]

Xing KShu QLentz D Ret al2020.

Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range,NE China

[J].American Mineralogist:Journal of Earth and Planetary Materials,1053):382-396.

[本文引用: 1]

Xu W CLuo B JXu Y Jet al2018.

Geochronology,geochemistry,and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan,South China:Implications for ultrahigh-temperature metamorphism and S-type granite generation

[J].Lithos,308168-180.

[本文引用: 1]

Yan JLiu XWang Set al2021.

Metallogenic type controlled by magma source and tectonic regime:Geochemical comparisons of Mesozoic magmatism between the Middle-Lower Yangtze River Belt and the Dabie Orogen,eastern China

[J].Ore Geology Reviews,133104095.

[本文引用: 1]

Zhang ShaoliWang LiankuiZhu Weifanget al1985.

Use of REE in apatites to distinguish the petrogeno-minerlization series of granitic rocks

[J].Geochemica,(1):45-57.

Zhang Wei2009.

The Geological Features and Evolution of Metallogenic Tectonics of the Ore Bearing Quartz Veins at Hukeng Tungsten Deposit,Jiangxi Province

[D].BeijingChina University of Geosciences(Beijing).

[本文引用: 1]

Zhang Xiaobing2020.

Source,Magmatic Evolution and Hydrothermal Fluid Activity of Cretaceous Granites in the Coastal Region of SE China:Records from Apatite Geochemistry

[D].GuangzhouGuangzhou Institute of Geochemistry,Chinese Academy of Sciences.

[本文引用: 2]

Zhang YMa DGao J F2020.

Origin and evolution of ore-forming fluids in a tungsten mineralization system,Middle Jiangnan orogenic belt,South China:Constraints from in-situ LA-ICP-MS analyses of scheelite

[J].Ore Geology Reviews,127103806.

Zhao W WZhou M FWilliams-Jones A Eet al2018.

Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit,South China

[J].Chemical Geology,477123-136.

[本文引用: 1]

Zhou XSun TShen Wet al2006.

Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution

[J].Episodes,291):26.

[本文引用: 1]

Zhou Xinmin2003.

My thinking about granite geneses of South China

[J].Geological Journal of China Universities,(4):556-565.

陈懋弘章伟向君峰2009.

江西浒坑钨矿含矿韧性剪切带及其40Ar-39Ar年代学约束

[J].桂林工学院学报,292):195-206.

[本文引用: 4]

陈毓川王登红2012.

华南地区中生代岩浆成矿作用的四大问题

[J].大地构造与成矿学,363):315-321.

[本文引用: 1]

郭令智施央申马瑞士1983.

西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化

[J].地质学报,(1):11-21.

[本文引用: 1]

郭令智施央申马瑞士1984.

中国东南部地体构造的研究

[J].南京大学学报(自然科学版),(4):732-739.

[本文引用: 1]

韩丽黄小龙李洁2016.

江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示

[J].岩石学报,323):746-758.

[本文引用: 2]

江西省地质矿产勘查开发局1984.江西省区域地质志[M].北京地质出版社.

[本文引用: 1]

江西省地质矿产勘查开发局2014.中国矿产地质志·江西卷[M].北京地质出版社.

[本文引用: 1]

刘珺毛景文叶会寿2008a.

江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征

[J].岩石学报,248):1813-1822.

[本文引用: 3]

刘珺谢桂青施国栋2010.

武功山地区浒坑钨矿床成矿流体特征

[J].矿床地质,29增1):589-590.

[本文引用: 1]

刘珺叶会寿谢桂青2008b.

江西省武功山地区浒坑钨矿床辉钼矿Re-Os年龄及其地质意义

[J].地质学报,(11):1572-1579.

[本文引用: 3]

楼法生舒良树于津海2002.

江西武功山穹隆花岗岩岩石地球化学特征与成因

[J].地质论评,(1):80-88.

[本文引用: 2]

毛景文谢桂青郭春丽2008.

华南地区中生代主要金属矿床时空分布规律和成矿环境

[J].高校地质学报,144):510-526.

任纪舜1990.

论中国南部的大地构造

[J].地质学报,(4):275-288.

[本文引用: 1]

施央申舒良树郭令智1995.

论板块碰撞运动学研究──以江南和东天山造山带为例

[J].高校地质学报,(1):11-21.

[本文引用: 1]

舒良树2012.

华南构造演化的基本特征

[J].地质通报,317):1035-1053.

[本文引用: 1]

舒良树孙岩王德滋1998.

华南武功山中生代伸展构造

[J].中国科学(D辑:地球科学),(5):431-438.

[本文引用: 2]

吴富江张芳荣2003.

华南板块北缘东段武功山加里东期花岗岩特征及成因探讨

[J].中国地质,(2):166-172.

[本文引用: 1]

张绍立王联魁朱为方1985.

用磷灰石中稀土元素判别花岗岩成岩成矿系列

[J].地球化学,(1):45-57.

[本文引用: 1]

张晓兵2020.

中国东南沿海白垩纪花岗岩起源、演化和流体作用的磷灰石地球化学研究

[D].广州中国科学院广州地球化学研究所.

[本文引用: 1]

章伟2009.

江西浒坑钨矿含矿石英脉地质特征及其构造演化

[D].北京中国地质大学(北京).

周新民2003.

对华南花岗岩研究的若干思考

[J].高校地质学报,(4):556-565.

[本文引用: 1]

/