img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (3): 460-469.doi: 10.11872/j.issn.1005-2518.2022.03.006

• Mining Technology and Mine Management • Previous Articles    

Research on Speed Planning of Unmanned Driving Mining Trucks in Open-pit Mines

Pengfei WANG(),Lin BI,Liguan WANG()   

  1. School of Resources and Safety Engineering,Center South University,Changsha 410083,Hunan,China
  • Received:2021-12-21 Revised:2022-03-11 Online:2022-06-30 Published:2022-09-14
  • Contact: Liguan WANG E-mail:13849419393@163.com;liguan_wang@163.com

Abstract:

At present,driverless mining truck is gradually applied in the production of open-pit mine,however,the road structure of open-pit mine is complex,and the mining truck is prone to collision in driving due to the conflicting driving trajectories and perception limitations,and the existing sensor-based perception obstacle avoidance methods are prone to decisions such as emergency braking and emergency stopping and decelerating and stopping before starting,which not only cause tire wear and fuel waste,but also seriously affect the passing efficiency.In order to solve the above problems,based on the prominent features of the open-pit mine passage scene such as single traffic background,planning,organization and closure,and the advantage that driverless mine cards can accurately execute the planning speed,a mining card full passage speed optimization and collaborative planning method based on time distance constraint dissipation workshop conflict and planning speed based on adaptive trapezoidal speed planning method was proposed.The method first abstractly models the road network scenario based on road information and specifies the corresponding maximum speed limit according to the actual situation of different road sections.The second step is to combine the information of the traveling mine cards in the road network to detect the conflict between mine cards at each node in the target mine card traveling path.The third step is to add time distance constraint to each node to dissipate the conflict between mining cards according to the type of conflict between mining cards,and finally to use adaptive trapezoidal speed planning method to generate the whole collaborative passing speed scheme for the target mining card.The experiments use the traditional stop-and-go obstacle avoidance algorithm as a comparison,and the results show that the method can dissipate the conflicts between mining cards and maintain the safe distance between the front and rear vehicles without affecting the normal passage of other moving mining cards,and improve the smoothness of the speed of the target mining card in driving,while reducing the passage time by 21% compared with the traditional stop-and-go obstacle avoidance algorithm.

Key words: open-pit mine, unmanned driving, mining truck, speed optimization, planning coordination, trapezoidal speed planning

CLC Number: 

  • TD176

Fig.1

Flow of speed collaborative planning method"

Fig.2

Road network model of open-pit transportation system"

Fig.3

Schematic of road section division"

Fig.4

Schematic of the types of intersection vehicle confilict"

Fig.5

Schematic of the principle of intersection vehicle conflict elimination"

Fig.6

Schematic of the principle of vehicle rear-end conflict elimination"

Fig.7

Schematic of the principle of single-section trapezoidal speed planning"

Fig.8

Schematic of the relationship between time distance constraint and passing speed curve"

Fig.9

Schematic of adaptive trapezoidal speed planning results"

Fig.10

Schematic of experimental road scene"

Table 1

Simulation road scene parameters"

道路ID路段划分数量路段长度/m路段限速 /(km·h-1道路总长 /m
L6_J63100、100、10020、30、25300
J6_J43125、150、12530、40、30400
J4_J22300、5035、30350
J2_J13175、75、10035、20、25350
J1_D14200、100、100、10035、20、15、25500

Table 2

Related parameters of simulated trucks"

矿卡出发时刻/s加速度/(m·s-2减速度/(m·s-2行驶方向行驶路径
Ta00.50.5采装点—卸载点L6、J6、J4、J2、J1、D1
Tb-120.41.2采装点—卸载点L7、J6、J4、J2、J1、D1
Tc-130.30.5采装点—卸载点L8、J4、J2、J1、D1
Td-20.50.3采装点—卸载点L4、J5、J3、J2、J1、D1
Tm-80.40.5采装点—卸载点L4、J5、J3、J7、J1、D1
TE-30.150.8卸载点—采装点D1、J1、J2、J3、J5、L4
TF-610.40.5卸载点—采装点D1、J1、J2、J4、L8
TZ-700.50.5卸载点—采装点D2、J7、J1、J2、J4、L8
TG1000.50.5卸载点—采装点D2、J7、J1、J2、J4、L8
TH400.150.8卸载点—采装点D1、J1、J2、J3、J5、L4

Fig.11

Schematic of traffic speed planning results"

Ding Zhen, Meng Feng,2020.Domestic and overseas research status and key technologies of unmanned mine trucks [J].China Coal,46(2):42-49.
Duan Min, Yu Wentai, Liu Zhenpeng,2020.Research on multi-vehicle cooperative control of unmanned vehicle at intersection [J].Automobile Technology,535(4):33-39.
Fu Rui, Zhang Yali, Yuan Wei,2019.Progress and prospect in research on eco-driving [J].China Journal of Highway and Transport,32(3):1-12.
Gao Rui,2021.Research on Aid Decision-Making for Driving Safety of Uncrewed Mining Trucks in Open-pit Mine [D].Chongqing:Southwest University.
González D, Pérez J, Milanés V,et al,2016.A review of motion planning techniques for automated vehicles[J].IEEE Transactions on Intelligent Transportation Systems,17(4) :1135-1145.
Guo G, Wang Q,2019.Fuel-efficient en route speed planning and tracking control of truck platoons[J].IEEE Transaction on Intelligent Transportation Systems,20(8) :3091-3103.
Kan Yuting,2020.Safety Distance Design for Unmanned Mine Trucks in Open-pit Mines Based on Sensor Reliability Analysis [D].Xuzhou:China University of Mining and Technology.
Li Donglin, Lu Xiangyang, Li Lei,et al,2019.An overview of autonomous open-pit mine haulage system [J].Electric Drive for Locomotives,267(2):1-8.
Liu Weifang, Wu Di,2020.Technology development status of unmanned driving in open-pit mines at home and abroad [J].Opencast Mining Technology,35(4):32-34,38.
Ng E C, Huang Y, Hong G,et al,2021.Reducing vehicle fuel consumption and exhaust emissions from the application of a green-safety device under real driving[J].Science of the Total Environment,793 :148602.
Sharma N, Kumar P, Dhyani R,et al,2018.Idling fuel consumption and emissions of air pollutants at selected signalized intersections in Delhi[J].Journal of Cleaner Production,212 :8-21.
Su Min,2020.Research and application of V2X communication technology based on intelligent driving scene in open pit mining area [J].Digital Communication World,(11):160-161,164.
Tao Qianwen, Hu Zhaozheng, Cai Hao,et al,2019.A study of vehicle perception and localization:An overview of the 29th IEEE Intelligent Vehicles Symposium[J].Journal of Transport Information and Safety,37(2):1-9.
Wang Fumin, He Changbin,2021.Status and outlook of autonomous driving technology for trucks in open-pit mine [J].Opencast Mining Technology,36(3):45-47.
Wu Jiang, Zheng Qunfei,2021.Feasibility study of driverless system in Harwusu open-pit coal mine[J].Metal Mine,50(2):167-172.
Yu Xiangjun, Huai Yuanhui, Yao Zongwei,et al,2021.Key technologies in autonomous vehicle for engineering[J].Journal of Jilin University(Engineering and Technology Edition),51(4):1153-1168.
Yu Zhuoping, Li Yishan, Xiong Lu,2017.A review of the motion planning problem of autonomous vehicle[J].Journal of Tongji University(Natural Science),45(8):1150-1159.
Zhang Ning, Ma Wenshuang,2020.Analysis on technical requirements of autopilot for high-precision map[J].Logistics & Material Handling,25(1):135-137.
Zhang Y, Chen H, Waslander S L,et al,2018.Toward a more complete,flexible,and safer speed planning for autonomous driving via convex optimization[J].Sensors,18(7) :2185-2185.
Zheng Yi,2020.Research on Cooperative Vehicle Control Algorithm at Unsignalized Intersection Under Connected Vehicles Environment[D].Changchun:Jilin University.
丁震,孟峰,2020.矿用无人卡车国内外研究现状及关键技术[J].中国煤炭,46(2):42-49.
段敏,于文泰,刘振朋,2020.无人驾驶汽车十字路口多车协作控制研究[J].汽车技术,535(4):33-39.
付锐,张雅丽,袁伟,2019.生态驾驶研究现状及展望[J].中国公路学报,32(3):1-12.
高睿,2021.露天矿区无人驾驶矿车的安全通行辅助决策研究[D].重庆:西南大学.
阚雨婷,2020.基于传感器可靠性分析的露天矿无人驾驶矿车安全车距设计[D].徐州:中国矿业大学.
李东林,路向阳,李雷,等,2019.露天矿山运输无人驾驶系统综述[J].机车电传动,267(2):1-8.
刘伟芳,吴迪,2020.国内外露天矿山无人驾驶技术发展现状[J].露天采矿技术,35(4):32-34,38.
苏敏,2020.基于露天矿区智能驾驶场景的V2X通信技术研究及应用[J].数字通信世界,(11):160-161,164.
陶倩文,胡钊政,蔡浩,等,2019.车辆感知与定位研究——第29届国际智能车大会综述[J].交通信息与安全,37(2):1-9.
王富民,贺昌斌,2021.露天矿卡车无人驾驶技术的现状与展望[J].露天采矿技术,36(3):45-47.
武讲,郑群飞,2021.哈尔乌素露天矿无人驾驶方案研究[J].金属矿山,50(2):167-172.
于向军,槐元辉,姚宗伟,等,2021.工程车辆无人驾驶关键技术[J].吉林大学学报(工学版),51(4):1153-1168.
余卓平,李奕姗,熊璐,2017.无人车运动规划算法综述[J].同济大学学报(自然科学版),45(8):1150-1159.
张宁,马文双,2020.自动驾驶对于高精地图的技术需求分析[J].物流技术与应用,25(1):135-137.
郑义,2020.车联网环境下无信号交叉口车辆协同控制算法研究[D].长春:吉林大学.
[1] Fanbo GONG,Lin BI. Research on Trajectory Planning of Electric Shovel in Open-pit Mine [J]. Gold Science and Technology, 2021, 29(1): 43-52.
[2] Lin BI,Chao ZHOU,Xin YAO. Unsafe Behavior Identification of Mining Truck Drivers Based on Video Sequences [J]. Gold Science and Technology, 2021, 29(1): 14-24.
[3] Ensheng KANG, Haidong MENG, Zihao ZHAO, Tao HE. Investigation on Factors Affecting Slope Instability in Open-pit Mines Based on Geophysical Prospecting Technology [J]. Gold Science and Technology, 2020, 28(3): 363-371.
[4] YANG Mingcai, SHENG Jianlong, YE Zuyang, DONG Shu. Analysis of Sensitivity Factors of Open-pit Mine Slope Stability and Impact Based on FlAC3D [J]. Gold Science and Technology, 2018, 26(2): 179-186.
[5] JIA Mingtao,LV Qinghai,CHEN Xin,SONG Huaqiang. Application of Aggregation Staging Algorithm in Medium and Long-term Production Planning of Open Pit [J]. Gold Science and Technology, 2017, 25(4): 58-64.
[6] WEN Chao, GU Qing-Hua, FENG Ji-Yi. The Research of the Ore Mixing Management System in the Open-pit Mine Based on GIS [J]. J4, 2009, 17(2): 58-62.
[7] LIU Qiu-Qin, HUANG Guang-Qiu, GUO Jin-Ping. A genetic program ming method to autom atically identify the function of side-slope lateral displacem ent in open-pit mines [J]. J4, 2000, 8(2): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!