img

Wechat

Adv. Search

Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (1): 164-172.doi: 10.11872/j.issn.1005-2518.2021.01.114

• Mining Technology and Mine Management • Previous Articles    

Experimental Research on Flotation of a Refractory Gold and Copper Oxide Ore in Gansu

Heng LI()   

  1. Xi’an Engineering Investigation and Design Research Institute of China National Non-ferrous Metals Industry Co. ,Ltd. ,Xi’an 710061,Shaanxi,China
  • Received:2020-06-22 Revised:2020-08-20 Online:2021-02-28 Published:2021-03-22

Abstract:

Silicon malachite is an extremely refractory copper oxide mineral,and the focus of chrysocolla flotation research is the development of new reagents.However, the selectivity and price factors of new pharmaceuticals restrict their industrial applications.In order to improve the flotation index under the premise of using conventional flotation reagents, it is very important to conduct process mineralogy research on refractory copper oxide ore.A refractory gold-copper oxide ores in Gansu Province contains Au 4.83 g/t and Cu 1.18%. The oxidation rate of Cu is as high as 95.87%.The copper minerals are mainly chrysocolla, which is difficult to select and closely related to gangue minerals.Gold is associated with copper minerals.Based on the study of mineralogy of raw ore process, the causes of copper and gold losses in tailings were analyzed and discussed.Sulfide flotation was adopted.After grinding,the products with fineness less than 74 μm accounted for 80%.Under the conditions of sodium sulfide as curing reagent, copper sulfate as activator, butyl xanthate, hydroxamic acid and No.25 dithiophosphate as collector, the sulfide flotation process adopted is “roughing once,sweeping four times,and regrinding coarse concentrate for three times”.The results show that the gold-copper concentrate with Au grade of 86.65 g/t, Au recovery rate of 89.11%, Cu grade of 16.93%, Cu recovery rate of 71.92%,Ag grade of 216.24 g/t and Ag recovery rate of 87.26% was obtained.Through analysis,it is believed that there are 4 reasons for the loss of copper and gold in tailings.1)The oxidation rate of copper is high, there are many types of copper minerals,and there are differences in floatability,in addition,silicon malachite is the main copper-bearing mineral, and its floatability is not good.2)There is a phenomenon that fine-grained silicon malachite is wrapped in gangue minerals.3) The tailings screening analysis shows that the copper lost in the tailings is of fine grade,therefore, the loss of this part of copper in the tailings is a reasonable loss.4)The gold phase analysis results show that the distribution rate of silicate-coated gold and carbonate-coated gold in the tailings is 76.38%, and the gold lost in the tailings is mainly wrapped in veins stone minerals.Gold-copper concentrates can be pre-oxidized by hot-pressing and non-cyanide to recover gold and copper.This smelting process can provide a certain reference for the development and utilization of gold-copper oxide copper mine.

Key words: gold-copper oxide ores, processing mineralogy, silicon malachite, sulfide flotation, combined collector, gold-copper concentrate

CLC Number: 

  • TD953

Table 1

Multi-element analysis results of raw ore samples"

元素含量/%元素含量/%
Ag*12.45MgO3.14
Au*4.83CaO3.74
Cu1.18Al2O315.31
Pb0.02SiO263.73
Zn0.063Na2O0.14
S0.032K2O2.07
As0.13TFe1.03
Mn1.77

Table 2

Analysis results of copper phase(%)"

相别含量分布率
合计1.210100.00
硫化相中铜0.0292.40
氧化相中铜1.16095.87
结合相中铜0.0251.73

Table 3

Analysis results of gold phase"

相别含量/(g·t-1分布率/%
合计5.09100.00
裸露及半裸露金3.7573.67
碳酸盐包裹金0.5911.59
硅酸盐包裹金0.183.54
硫化物包裹金0.5310.41
赤褐铁包裹金0.050.79

Table 4

Minerals composition and relative content(%)"

矿物名称含量矿物名称含量
角闪石6.02石英7.55
斜长石60.38绿泥石6.93
钾长石15.76黑云母3.36

Fig.1

Test process of grinding fineness"

Fig.2

Test results of grinding fineness"

Fig. 3

Test results of the regulators type"

Fig. 4

Test results of Na2S dosage"

Fig.5

Test results of CuSO4 dosage"

Fig.6

Test results of the collectors type"

Fig.7

Test results of the collector dosage"

Fig.8

Test process of closed-circuit"

Table 5

Test results of closed-circuit"

产品名称产率/%品位回收率/%
Cu/%Au/(g·t-1)AgCuAuAg
金铜精矿5.0216.9385.65216.2471.9289.1187.26
尾矿94.980.350.551.6728.0810.8912.74
原矿100.001.184.8212.44100.00100.00100.00

Table 6

Screening results of tailings particle size"

粒度/mm占有率/%铜品位/%铜分布率/%
合计100.00.35100.0
+0.1502.720.221.70
-0.150+0.07532.590.2926.99
-0.075+0.04522.220.2918.18
-0.045+0.03855.560.314.83
-0.0385+0.030812.390.3110.80
-0.030824.520.5437.50

Table 7

Analysis results of gold phase in the tailings"

相别含量/(g·t-1分布率/%
合计0.56100.00
裸露及半裸露金0.0285.00
碳酸盐包裹金0.18733.54
硅酸盐包裹金0.24042.84
硫化物包裹金0.0162.83
赤褐铁包裹金0.08915.79

Table 8

Quality analysis results of gold-copper concentrate(%)"

元素含量元素含量
Au*85.65S0.85
Ag*216.24As0.16
Cu16.93Zn0.092
MgO3.07Bi+Sb<0.1
Pb0.039
Cui Yiqi,Meng Qi,Wang Feiwang,al et,2016.Low-grade and high combination ratio copper oxide ore using united technology of beneficiation and metallurgy[J].Journal of Central South University(Natural Science Edition),47(8):2550-2555.
Dai Kejin,Chen Daixiong,Zhang Qin,al et,2016.Experiment on floatation of a domestic oxidized copper ore with high fine mud content [J].Nonferrous Metals Engineering, 6(2):52-55,100.
Lei Li,Wang Hengfeng,Cao Xin,2014.Experimental research on mineral processing of one copper bearing gold ore[J].Gold,35(9):56-60.
Li Guoyao,2017.Flotation test on high oxidation copper ore[J].Modern Mining,33(12):102-104.
Li Xinxing,Li Hongsong,Yang Yang,2015.Flotation test of a refractory copper oxide ore[J].Modern Mining,31(7):73-75.
Li Youhui,Li Chengbi,Zhang Xingrong,al et,2017.Flotation experiment on an oxide copper ore in Yunnan [J].Metal Mine,(4):68-71.
Long Wei,2017.Study on Beneficiation Process of a Low-grade Refractory Copper Oxide Ore[D].Wuhan:Wuhan University of Science and Technology.
Lü Chao,Zhao Xuan,Liang Yiqiang,al et,2019.Experimental study on flotation of a certain copper oxide from Yunnan [J].Nonferrous Metals(Mineral Processing Section),(3):46-50.
Ning Fatian,Feng Zhongwei,Mo Jiangmin,al et,2018.Experiment study on mineral processing of a refractory oxide copper ore of Guangxi[J].Nonferrous Metals(Mineral Processing Section),(4):15-18.
Peng Yingjian,Lü Chao,Yao Youli,2019.Research on flotation test of a copper oxide ore of Dongchuan in Yunnan [J].Mining Research and Development,39(3):25-28.
Qiao Jibo,Wang Shaodong,Zhang Jing,al et,2018.Beneficiation technology for copper oxide ore from Burma[J].Mining and Metallurgical Engineering,38(3):71-73,78.
Sun Guangzhou,Shan Yong,Huang Bin,al et,2017.Experimental research on beneficiation of Dongchuan Tangdan refractory copper oxide ore[J].Nonferrous Metals(Mineral Processing Section),(4):7-10,63.
Sun Zhijian,Chen Jinghua,Li Chengbi,al et,2013.Study on the beneficiation test of a refractory oxide copper ore containing high-content slimes[J].Nonferrous Metals (Mineral Processing Section),(4):5-8,13.
Sun Zhongmei,2016.Flotation experiment on a copper oxide ore[J].Modern Mining,32(2):55-57,62.
Sun Zhongmei,Long Yi,Zhang Xingxun,al et,2019.Study on improving recovery rate of refractory copper oxide ores[J].Non-Ferrous Metals(Mineral Processing Section),(5):45-49.
Wang Kai,2014.Experimental Research on Recovery of Refractory Copper Oxide Ore with High Combination Rate[D].Kunming:Kunming University of Science and Technology.
Wang Long,Niu Fusheng,Zhang Jinxia,al et,2016.Research progress of mineral processing technology of low grade copper oxide ore[J].Metal Mine,(9):127-131.
Wang Yijie,Wen Shuming,Liu Dan,al et,2013.Copper recovery from a refractory and high combination rate copper oxide ore using a combined process of beneficiation and metallurgy[J].Journal of Kunming University of Science and Technology(Natural Science Edition),38(5):28-34.
Yin Wanzhong,Wu Kai,2013. Current status and prospects of beneficiation technology for refractory copper oxide ore [J].Nonferrous Metal Engineering,3(6):66-70.
Zhang Fenghua,Song Baoxu,2014.Efficient recovery of a complex refractory copper oxide ore [J].Mining and Metallurgical Engineering,34(6):26-28,32.
崔毅琦,孟奇,王飞旺,等,2016.低品位高结合率氧化铜矿选冶联合试验[J].中南大学学报(自然科学版),47(8):2550-2555.
戴柯进,陈代雄,张芹,等,2016.国内某高细泥氧化铜矿选矿试验[J].有色金属工程,6(2):52-55,100.
雷力,王恒峰,曹欣,2014.某含铜金矿石选矿试验研究[J].黄金,35(9):56-60.
李国尧,2017.某高氧化率铜矿石浮选试验[J].现代矿业,33(12):102-104.
李新星,李红松,杨阳,2015.某难选氧化铜矿石浮选试验[J].现代矿业,31(7):73-75.
李有辉,李成必,张行荣,等,2017.云南某氧化铜矿石浮选试验[J].金属矿山,(4):68-71.
龙伟,2017.某难选低品位氧化铜矿选矿工艺研究[D].武汉:武汉科技大学.
吕超,赵轩,梁溢强,等,2019.云南某氧化铜浮选试验研究[J].有色金属(选矿部分),(3):46-50.
宁发添,冯忠伟,莫江敏,等,2018.广西某难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):15-18.
彭英健,吕超,姚有利,2019.云南东川某氧化铜矿浮选试验研究[J].矿业研究与开发,39(3):25-28.
乔吉波,王少东,张晶,等,2018.缅甸某氧化铜矿选矿工艺研究[J].矿冶工程,38(3):71-73,78.
孙广周,单勇,黄斌,等,2017.东川汤丹难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):7-10,63.
孙志健,陈经华,李成必,等,2013.某含泥难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):5-8,13.
孙忠梅,2016.某氧化铜矿石硫化浮选试验[J].现代矿业,32(2):55-57,62.
孙忠梅,龙翼,张兴勋,等,2019.提高难选氧化铜矿选矿回收率试验研究[J].有色金属(选矿部分),(5):45-49.
王凯,2014.高结合率难选氧化铜矿选矿回收试验研究[D].昆明:昆明理工大学.
王龙,牛福生,张晋霞,等,2016.低品位氧化铜矿石选矿工艺研究进展[J].金属矿山,(9):127-131.
王伊杰,文书明,刘丹,等,2013.难处理高结合率氧化铜矿选冶联合工艺研究[J].昆明理工大学学报(自然科学版),38(5):28-34.
印万忠,吴凯,2013.难选氧化铜矿选冶技术现状与展望[J].有色金属工程,3(6):66-70.
张凤华,宋宝旭,2014.复杂难选氧化铜矿高效利用工艺研究[J].矿冶工程,34(6):26-28,32.
[1] Bo YANG,Xiao WANG,Yonggang XIE,Xian XIE. Study on the Processing Mineralogy of a Refractory Gold Ores from Qinghai Province [J]. Gold Science and Technology, 2021, 29(3): 467-475.
[2] WANG Xueqian,TANG Junzhi,QU Hongfan. Discussion on the Calculation of the Theoretical Recovery of Polymetallic Ore [J]. Gold Science and Technology, 2014, 22(2): 60-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Bing-Zhong, SONG Bing-Jian. Analysis of Gold Prospecting Potential in GaLasan area,Heilongjiang Province[J]. J4, 2011, 19(1): 34 -37 .
[2] JIAO Gejun,LIU Hongchuan,ZHANG Shaoning,SHEN Yong-heng. Portable GPS Veceiver is in the Iarge Geolgical Measuremeent of Medium and Small Scale of Area and Geochemical stream Sediment Survey of Method Employ and Exact Extent in Analyse[J]. J4, 2005, 13(05): 30 -32 .
[3] CHEN Hai-Meng, LIU Zhi-Meng, QU Hui. Mineralogy Evidences of The Dongan Epithermal Gold Deposit in Northern Heilongjiang Province[J]. J4, 2006, 14(4): 14 -18 .
[4] . [J]. J4, 2001, 9(3-4): 73 -84 .
[5] FENG Ti-Wen, WANG Xin-Hua. [J]. J4, 1999, 7(4~5): 45 -47 .
[6] LI Baoping,CHEN Yuhua,ZHOU Xiaozhong,LIU Jianhua,ZHAO Chenglong,YAN Jie,et al.. The Geological and Geochemical Characteristics of Gemalong Lead-zinc Mine, Qinghai Province[J]. J4, 2011, 19(3): 9 -13 .
[7] L IU J ian, FAN Manhua,DENG Zhigao, ZHANG Qingsong, ZHENG Chengying. Exper imenta l Study on Comprehensive Shr inkageMethod in Na lin Gold Deposit[J]. J4, 2008, 16(6): 48 -50 .
[8] ZHANG Baolin,CAI Xinping,WANG Jie,LIANG Guanghe,DING Rufu,XIAO Qibin,SONG Baocha. Prospecting Potential of Concealed Gold Deposits of New Types in the Bordering Areas Among Shanxi,Hebei and Inner Mongol ia With Special Respect to the Deposits of Puziwan,Jiuduigou and Shuijingtun[J]. J4, 2004, 12(2): 5 -11 .
[9] SONG He-Min, ZHANG Wen-Zhao, XU Shu-Beng. Geochemical anomaly models and exploration meaning for Damoqujia gold deposit in Jiaodong[J]. J4, 2006, 14(6): 13 -23 .
[10] JING Longhua,GAO Ruofeng. Application of Short_hole Shrinkage M ethod in Jiawula Lead-zinc Deposit[J]. J4, 2008, 16(3): 57 -59 .