ISSN 1005-2518
CN 62-1112/TF
采选技术与矿山管理

基于YOLOV8的高磁铁矿输送带异物检测技术研究

  • 张紫欣 , 1 ,
  • 涂福泉 , 1 ,
  • 陈向东 2 ,
  • 高路萍 3 ,
  • 王涛 3 ,
  • 白云 3
展开
  • 1. 武汉科技大学冶金装备及其控制教育部重点实验室,湖北 武汉 430081
  • 2. 武钢资源集团鄂州球团矿有限公司,湖北 鄂州 436000
  • 3. 武钢资源集团大冶铁矿有限公司,湖北 黄石 435006
涂福泉(1970-),男,湖北孝感人,教授,从事矿山自动化研究工作。

张紫欣(2001-),女,湖北襄阳人,硕士研究生,从事图像识别研究工作。

收稿日期: 2024-07-16

  修回日期: 2024-11-25

基金资助

国家自然科学基金项目“航天用纳米颗粒多相流泵送机理及其分散均匀性主动调控研究”(52375061)

A Foreign Object Detection Technology in High Magnetic Ore Conveyor Belt Based on YOLOV8

  • Zixin ZHANG , 1 ,
  • Fuquan TU , 1 ,
  • Xiangdong CHEN 2 ,
  • Luping GAO 3 ,
  • Tao WANG 3 ,
  • Yun BAI 3
Expand
  • 1. Key Laboratory of Metallurgical Equipment and Control,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China
  • 2. Ezhou Pelletizing Co. ,Ltd. ,Wugang Resources Group,Ezhou 436000,Hubei,China
  • 3. Daye Iron Mine Co. ,Ltd. ,Wugang Resources Group,Huangshi 435006,Hubei,China

Received date: 2024-07-16

  Revised date: 2024-11-25

摘要

在矿山复杂环境中,高磁性矿输送带异物检测面临场景干扰严重、识别难度大的挑战,针对高磁性矿中异物边缘信息易丢失和实时响应难度大的问题,提出了基于YOLOV8的深度学习图像检测方法。首先,建立输送带异物数据集,采用暗通道去雾技术对数据进行预处理,提升图像清晰度;然后,结合YOLOV8的网络特性,引入动态注意力机制,并用蛇形卷积代替普通卷积,允许模型在处理输入数据时动态地分配注意力,同时捕捉到更广泛的局部和全局特征;最后,改进动态检测头来灵活适配多尺度和多方向的检测需求,以提升模型的适应性并降低参数计算量。试验结果表明:基于YOLOV8的异物检测模型平均检测准确率达到96.4%,召回率为91%,平均检测时间仅为29 ms,完全满足矿山皮带运输现场对精准检测和实时性的要求。

本文引用格式

张紫欣 , 涂福泉 , 陈向东 , 高路萍 , 王涛 , 白云 . 基于YOLOV8的高磁铁矿输送带异物检测技术研究[J]. 黄金科学技术, 2025 , 33(1) : 193 -201 . DOI: 10.11872/j.issn.1005-2518.2025.01.214

Abstract

In the intricate setting of mining operations,identifying foreign objects on conveyor belts transporting high-magnetic ore is hindered by significant scene interference and substantial recognition challenges.To address the issues of frequent loss of foreign object edge information and the considerable difficulty in achieving real-time,high-speed responses in high-magnetic environments,we propose an image recognition and detection methodology grounded in deep learning techniques.Initially,a dataset of foreign objects on conveyor belts is constructed.To address the issue of image blurring,which arises from the high-speed operation of the belt conveyor and the limited data acquisition frequency of industrial cameras,the dark channel defogging technique is employed to preprocess the data,thereby enhancing image clarity.Subsequently,the core architecture of YOLOV8 is refined by incorporating a dynamic attention mechanism and substituting standard convolution with snake convolution.The dynamic attention mechanism enables the model to dynamically allocate focus during input data processing.Concurrently,the integration of snake convolution in place of traditional convolution,in conjunction with C2f,significantly enhances the model’s capacity to process image details.This unique structure facilitates the capture of a broader spectrum of local and global features,thereby substantially reducing the model’s rates of false positives and missed detections concerning buried foreign objects.In conclusion,the YOLOV8 architecture has been enhanced through the integration of a dynamic detection head,which allows for flexible adaptation to multi-scale and multi-directional detection requirements.This modification aims to improve the model’s adaptability and optimize the reduction of computational parameters,thereby significantly enhancing its real-time performance in complex environments.Experimental results demonstrate that the model achieves an average detection accuracy of 96.4%,a recall rate of 91%,and an average detection time of merely 29 milliseconds.The algorithm presented in this paper de-monstrates an enhancement in average detection accuracy and recall by 5.2% and 6.2%,respectively,compared to the original network,thereby confirming its efficacy.This improved algorithm adequately satisfies the demands for precise detection and real-time performance in the context of mine belt transportation,offering substantial support for advancing mine safety management and operational efficiency.

国内首次发现 “冯锐银矿”获国际批准,填补矿物学研究空白

据2月6日报道,在河南发恩德蒿坪沟矿区发现的新型富银硫化物矿物——“冯锐银矿”(Fengruiite,缩写Fen),正式获得国际矿物学协会新矿物命名与分类专业委员会的批准。这是我国矿物学研究领域的一项重要成果,标志着我国在新矿物发现方面又向前了一步。

“冯锐银矿”是由中国地质大学(北京)科研团队和希尔威金属矿业有限公司技术团队在蒿坪沟矿区开展矿物学研究时首次识别出的新矿物。经过详细的化学成分分析、晶体结构研究以及与其他已知矿物的对比,科研团队确认这是一种全新的硫化物矿物。2025年1月13日,国际矿物学协会新矿物命名与分类专业委员会正式批准了“冯锐银矿”的命名申请,英文名称为Fengruiite,缩写Fen,编号为IMA 2024-045。

“冯锐银矿”是以希尔威金属矿业有限公司董事长冯锐博士的名字命名。冯锐博士在国内外矿业领域有近40年丰富的勘探和运营经验,在他的带领下,希尔威已经成为了中国主要的白银和铅锌生产商之一。

“冯锐银矿”是一种重要的富银矿物,其Ag元素的富集特征使其在贵金属资源开发和矿物学研究中具有潜在的应用价值和重要的科学价值,一直以来都是重要的勘查目标。该矿物的发现,不仅丰富了矿物学的研究内容,也为矿物资源的开发利用提供了新的方向。此外,对该矿物性质的进一步研究,将对河南发恩德洛宁矿区的银矿勘探和开采起到重要的指导意义。

脚注

中国有色金属报)

http://www.goldsci.ac.cn/article/2025/1005-2518/1005-2518-2025-33-1-193.shtml

Chen Y Sun X Xu L,et al,2022.Application of YOLOv4 algorithm for foreign object detection on a belt conveyor in a low-illumination environment[J].Sensors22(18):6851.

Cheng Deqiang Xu Jinyang Kou Qiqi,et al,2022.Lightweight network based on residual information for foreign body classification on coal conveyor belt[J].Journal of China Coal Society47(3):1361-1369.

Dai L Zhang X Gardoni P,et al,2023.A new machine vision detection method for identifying and screening out various large foreign objects on coal belt conveyor lines[J].Complex and Intelligent Systems9(5):5221-5234.

Dai X Y Chen Y P Xiao B,et al,2021.Dynamic head:Unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE.

Dong X Panpan L Jichun W,et al,2023.Mining belt foreign body detection method based on YOLOv4_GECA model[J].Scientific Reports13(1):8881-8881.

Eshaq R M A Hu E Li M,et al,2020.Separation between coal and gangue based on infrared radiation and visual extraction of the YCbCr color space[J].IEEE Access,8:55204-55220.

Gu Qinghua Zhou Qiong Wang Dan2024.Traveling obstacle detection in open-pit mine area based on improved YOLOv8[J].Gold Science and Technology32(2):345-355.

Han Yuexin Zhang Xiaolong Gao Peng,et al,2024.Development and prospect of iron ore processing technologies in China[J].Metal Mine53(2):1-24.

Liu X Pedersen M Wang R2022.Survey of natural image enhancement techniques:Classification,evaluation,challenges,and perspectives[J].Digital Signal Processing,127:103547.

Luo B Kou Z Han C,et al,2023.A “hardware-friendly”foreign object identification method for belt conveyors based on improved YOLOv8[J].Applied Sciences13(20):11464.

Qi Y He Y Qi X,et al,2023.Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE.

Ren Zhiling Zhu Yancun2023.Research on foreign object detection of coal mine belt transportation with improved centernet algorithm[J].Control Engineering of China30(4):703-711.

Ruan Shunling Ruan Yankang Lu Caiwu,et al,2023.Detection of ore conveyer roller based on infrared image[J].Gold Science and Technology31(1):123-132.

Sotoudeh F Nehring M Kizil M,et al,2020.Production scheduling optimisation for sublevel stoping mines using mathematical programming:A review of literature and future directions[J].Resources Policy,68:101809.

Wang W Zhang C2017.Separating coal and gangue using three-dimensional laser scanning[J].International Journal of Mineral Processing,169:79-84.

Wang Wei Li Qing Zhang Dezheng,et al,2023.A survey of ore image processing based on deep learning[J].Chinese Journal of Engineering45(4):621-631.

Xu Y J Zhang H Z He F L,et al,2023.Enhanced cycleGAN network with adaptive dark channel prior for unpaired single-image dehazing[J].Entropy25(6):856.

Yang Y Xu W Huang S,et al,2023.PEN-DS:Progressive enhancement network based on detail supplementation for low-light image enhancement[J].International Journal of Machine Learning and Cybernetics,15:2383-2398.

Zhang M Cao Y Jiang K,et al,2022.Proactive measures to prevent conveyor belt failures:Deep learning-based faster foreign object detection[J].Engineering Failure Analysis,141:106653.

Zhu L Wang X Ke Z,et al,2023.Biformer:Vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE.

程德强,徐进洋,寇旗旗,等,2022.融合残差信息轻量级网络的运煤皮带异物分类[J].煤炭学报47(3):1361-1369.

顾清华,周琼,王丹,2024.基于改进YOLOv8的露天矿区行车障碍物检测[J].黄金科学技术32(2):345-355.

韩跃新,张小龙,高鹏,等,2024.中国铁矿石选矿技术发展与展望[J].金属矿山53(2):1-24.

任志玲,朱彦存,2023.改进CenterNet算法的煤矿皮带运输异物识别研究[J].控制工程30(4):703-711.

阮顺领,阮炎康,卢才武,等,2023.基于红外图像的矿石传送带托辊异常检测[J].黄金科学技术31(1):123-132.

王伟,李擎,张德政,等,2023.基于深度学习的矿石图像处理研究综述[J].工程科学学报45(4):621-631.

文章导航

/