ISSN 1005-2518
CN 62-1112/TF
冶炼技术与装备研发

甘肃某复杂难处理金矿细菌氧化—氰化实验研究

  • 宋言 ,
  • 杨洪英 ,
  • 佟琳琳 ,
  • 马鹏程 ,
  • 金哲男
展开
  • 1.东北大学冶金学院,辽宁 沈阳 110819;
    2.山东招金集团有限公司,山东 招远 265400
宋言(1989-),男,河北邢台人,博士研究生,从事细菌冶金研究工作。SONGYANNEU@139.com

收稿日期: 2017-07-11

  修回日期: 2017-08-15

  网络出版日期: 2018-05-19

基金资助

国家自然科学基金项目“含砷复杂金矿细菌氧化矿物界面能及其作用机制的基础研究”(编号:U1608254)、“难浸含砷金矿细菌氧化过程中[AsS]2-→As(III)→As(V) 转化机理研究”(编号:51374066)、中央高校基本科研业务费专项基金资助项目“高硫高砷难处理金矿细菌氧化机理研究”(编号:N150206002)、辽宁省自然科学基金项目“难浸金矿特色细菌氧化—提金新工艺”(编号:2012223002)和“利用ASH-07浸矿菌从含铜浮选尾矿中高效绿色回收铜的新技术研究”(编号:2014020037)联合资助
 

Experimental Study on Bacterial Oxidation-Cyanidation of a Complex Re-fractory Gold Mine in Gansu Province

  • SONG Yan ,
  • YANG Hongying ,
  • TONG Linlin ,
  • MA Pengcheng ,
  • JIN Zhenan
Expand
  • 1.School of Metallurgy,Northeastern University,Shenyang 110819,Liaoning,China;2.Zhaojin Mining Industry Co.,Ltd.,Zhaoyuan 265400,Shandong,China

Received date: 2017-07-11

  Revised date: 2017-08-15

  Online published: 2018-05-19

摘要

以甘肃某含硫、砷、碳及锑等多种成分的难处理金矿为研究对象,开展了细菌氧化—氰化实验研究。浸矿菌种为HQ0211,该菌种经长期驯化,耐砷性良好。在浸出过程中,通过测量矿浆的pH 值、电位值、Fe2+质量浓度和液砷含量,来考察不同矿浆浓度对浸出效果的影响。实验结果表明:HQ0211混合菌种适宜氧化该复杂难处理金矿。经该菌种氧化预处理后,脱硫率最高可达81.53%,脱砷率最高可达86.88%,脱碳率最高可达58.32%,脱锑率最高可达40.09%。与未经处理的原矿氰化提金结果相比,经过细菌氧化预处理后,金的回收率最高可达98.65%,相比直接氰化浸出提高了40.56%。

本文引用格式

宋言 , 杨洪英 , 佟琳琳 , 马鹏程 , 金哲男 . 甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J]. 黄金科学技术, 2018 , 26(2) : 241 -247 . DOI: 10.11872/j.issn.1005-2518.2018.02.241

Abstract

Taking the complex refractory gold mine containing sulfur,arsenic,carbon and antimony in Gansu Province as the research object,we carried out bacterial oxidation-cyanidation experiment.Bacteria used in the leaching was HQ0211 which was a kind of mixed bacteria being able to grow normally in the system containing arsenic after a long time of domestication.During leaching of the concentrate,the effects of different pulp densities on bacterial oxidation were evaluated by measuring the pH value of solution,the electric potential value of solution,the density of Fe2+,the density of arsenic in solution.The results indicated that the mixed bacteria cultures HQ0211 showed good biooxidation performance for the complex refractory gold concentrate. After biooxidation,the maximum sulfur removal efficiency of 81.53%,arsenic removal efficiency of 86.88%,carbon removal efficiency of 58.32% and antimony removal efficiency of 40.56% were achieved in the presence of the HQ0211 mixed culture.Highest gold recovery of 98.65% was achieved by cyanidation after biooxidation,which increased by 40.56% comparing to the result from cyanidation of the untreated concentrate.

参考文献


[1] 付丹,梅雪,张晖.黄金价格与通货膨胀相关性的实证分析[J].黄金,2009,30(1):4-7.
 Fu Dan,Mei Xue,Zhang Hui.Empirical analysis on the correlation between gold price and inflation[J].Gold,2009,30(1):4-7.
[2] 李鹏远.中国黄金供需预测及对策研究[D].北京:中国地质大学(北京),2015.
 Li Pengyuan.China’s Gold Supply and Demand Forecasting and Countermeasure Research[D].Beijing:China University of Geosciences (Beijing),2015.
[3] 周博敏,安丰玲.世界黄金生产现状及中国黄金工业发展的思考[J].黄金,2012,33(3):1-6.
 Zhou Bomin,An Fengling.Current situations of worldwide gold production and considerations on gold industry development in China[J].Gold,2012,33(3):1-6.
[4] 杨洪英,巩恩普,杨立.低品位双重难处理金矿石工艺矿物学及浸金影响因素[J].东北大学学报(自然科学版),2008,29(12):1742-1745.
 Yang Hongying,Gong Enpu,Yang Li.Process mineralogy of low-grade double refractory gold ore and influencing factor on gold leaching[J].Journal of Northeastern University(Natural Science),2008,29(12):1742-1745.
[5] 陈懋弘,毛景文,陈振宇,等.滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J].矿床地质,2009,28(5):539-557.
 Chen Maohong,Mao Jingwen,Chen Zhenyu,et al.Mineralogy of arsenian pyrites and arsenopyrites of carlin-type gold deposits in Yunnan-Guizhou-Guangxi “golden triangle” area,southwestern China[J].Mineral Deposits,2009,28(5):539-557.
[6] 张伟,王宏强,邓晓东,等.鄂东南地区鸡冠嘴铜金矿床Au-Ag-Bi-Te-Se矿物学研究与金银富集机理[J].岩石学报,2016,32(2):456-470.
 Zhang Wei,Wang Hongqiang,Deng Xiaodong,et al.Mineralogy of the Au-Ag-Bi-Te-Se assemblages in the Jiguanzui Cu-Au skarn deposit,Daye District,southeastern Hubei Province[J].Acta Petrologica Sinica,2016,32(2):456-470.
[7] 杨洪英,杨立,佟琳琳,等.广西金牙难浸金矿的工艺矿物学研究[J].东北大学学报(自然科学版),2007,28(8):1156-1158.
 Yang Hongying,Yang Li,Tong Linlin,et al.Process mineralogy of refractory gold ore in Jinya,Guangxi Province[J].Journal of Northeastern University (Natural Science),2007,28(8):1156-1158.
[8] 杨洪英,杨立,范有静,等.广西某难处理金矿金的赋存状态研究[J].贵金属,2003,24(4):32-35.
 Yang Hongying,Yang Li,Fan Youjing,et al.Study on gold occurrence state of refractory gold concentrates in Guangxi[J].Precious Metals,2003,24(4):32-35.
[9] 陈翠华,张燕,顾雪祥,等.贵州苗龙金矿床毒砂中金的赋存状态研究[J].矿床地质,2013,32(5):932-940.
 Chen Cuihua,Zhang Yan,Gu Xuexiang,et al.Modes of occurrence of gold in arsenopyrite from Miaolong gold deposit in Sandu,Guizhou Province[J].Mineral Deposits,2013,32(5):932-940.
[10] 张燕,陈翠华,顾雪祥,等.贵州三都苗龙金—锑矿床金赋存状态初步探讨[J].中国地质,2014,41(5):1620-1635.
 Zhang Yan,Chen Cuihua,Gu Xuexiang,et al.A preliminary study of modes of occurrence of gold in the Miaolong Au-Sb deposit of Sandu area,Guizhou Province[J].Geology in China,2014,41(5):1620-1635.
[11] Amankwah R K,Yen W T,Ramsay J A.A two-stage bacterial pretreatment process for double refractory gold ores[J].Minerals Engineering,2005,18(1):103-108.
[12] Song Y,Yang H Y,Tong L L.Bioleaching of complex refractory gold ore concentrate of China:Comparison of shake flask and continuous bioreactor[J].Advanced Materials Research,2015,1130:243-246.
[13] Liu Q,Yang H Y,Tong L L.Influence of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon[J].Transactions of Nonferrous Metals Society of China,2014,24(6):1905-1911.
[14] Pan H D,Yang H Y,Tong L L,et al.Control method of chalcopyrite passivation in bioleaching[J].Transactions of Nonferrous Metals Society of China,2012,22(9):2255-2260.
[15] Liu Q,Yang H Y,Tong L L,et al.Fungal degradation of elemental carbon in Carbonaceous gold ore[J].Hydrometallurgy,2016,160(2):90-97.
[16] Chandraprabha M N,Modak J M,Natarajan K A,et al.Strategies for efficient start-up of continuous biooxidation process for refractory gold ores[J].Minerals Engineering,2002,15(10):751-753.
[17] Canales C,Acevedo F,Gentina J C.Laboratory-scale continuous bio-oxidation of a gold concentrate of high pyrite and enargite content[J].Process Biochemistry,2002,37(10):1051-1055.
[18] Lotfalian M,Ranjbar M,Fazaelipoor M H,et al.The effect of redox control on the continuous bioleaching of chalcopyrite concentrate[J].Minerals Engineering,2015,81:52-57.
[19] Elberling B,Schippers A,Sand W.Bacterial and chemical oxidation of pyritic mine tailings at low temperatures[J].Journal of Contaminant Hydrology,2000,41(3/4):225-238.
[20] Konishi Y,Kogasaki K,Asai S.Bioleaching of pyrite by Acidianus brierleyi in a continuous-flow stirred-tank reactor[J].Chemical Engineering Science,1997,52(24):4525-4532.
[21] Wei Y,Zhong K,Adamov E V,et al.Semi-continuous biooxidation of the Chongyang refractory gold ore[J].Minerals Engineering,1997,10(6):577-583.
[22] Brierley J A,Brierley C L.Present and future commercial applications of biohydrometallurgy[J].Process Metallurgy,1999,9(2):81-89.
[23] Ehrlich H L.Past,present and future of biohydrometallurgy[J].Hydrometallurgy,2001,59(2/3):127-134.

文章导航

/