img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究

  • 丘学民 ,
  • 陈国宝* ,
  • 张勤 ,
  • 杨洪英
展开
  • 东北大学冶金学院,辽宁  沈阳   110819
丘学民(1988-),男,福建上杭人,博士研究生,从事细粒浮选研究工作。qxm20080902@163.com

收稿日期: 2017-07-11

  修回日期: 2017-08-29

  网络出版日期: 2018-05-18

基金资助

国家自然科学基金项目“含砷复杂金矿细菌氧化矿物界面能及其作用机制的基础研究”(编号:U1608254)、“难浸含砷金矿细菌氧化过程砷转化机理研究”(编号:51374066)、“典型难处理钴矿物的晶格畸变和生物择矿性浸出机理的研究”(编号:51304047)和辽宁省自然科学基金项目“利用ASH-07浸矿细菌从含铜浮选尾矿中高效绿色回收铜的新技术研究”(编号:2014020037)联合资助

Experimental Study on Flotation Recovery of Valuable Metals from Ultrafine Cyanide Tailing Containing High Grade Lead and Zinc

  • QIU Xuemin ,
  • CHEN Guobao ,
  • ZHANG Qin ,
  • YANG Hongying
Expand
  • School of Metallurgy,Northeastern University,Shenyang   110819,Liaoning,China

Received date: 2017-07-11

  Revised date: 2017-08-29

  Online published: 2018-05-18

摘要

从超细粒氰化尾渣中回收有价元素是浮选中的难题,目前采用的方法主要是先加入氧化剂预处理脱氰,再加入捕收剂浮选。然而,该工艺存在药剂成本高、氰化物无法循环使用及矿物表面二次氧化等问题。以山东某高铅锌氰化尾渣为研究对象,在不脱氰的条件下,以氰化贫液为浮选用水,通过浮选试验和闭路试验等方法研究氰化尾渣的浮选回收效果。试验结果表明,在不脱氰的条件下,可浮选回收铅锌,铅精矿铅品位为56.61%,回收率为89.04%;锌精矿锌品位为32.6%,回收率为74.5%。SEM显微镜研究表明,铅精矿中铜矿物表面包裹一层小颗粒方铅矿,改变了黄铜矿界面性质,使得铜矿物表面特性趋于方铅矿界面性质,导致铜矿物大部分进入铅精矿中。

本文引用格式

丘学民 , 陈国宝* , 张勤 , 杨洪英 . 从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究[J]. 黄金科学技术, 2017 , 25(6) : 61 -67 . DOI: 10.11872/j.issn.1005-2518.2017.06.061

Abstract

Recovery valuable metal from cyanide tailing by flotation is difficulty.The main method currently adopted is to remove cyanide from tailing by adding oxidizing agents and then adding collector to recovery the objective minerals.However,there are some problems in the process,such as high cost of reagent,cyanide unable to reuse,and secondary oxidation of mineral surface.Taking cyanide tailings which contain high grade of lead and zinc in Shandong Province as research object,the flotation recovery of cyanide tailings was studied by flotation test and closed circuit test under the condition of non-cyanide removal,cyanide barren solution was used as flotation water.It was proved that valuable metals in the cyanide tailing can be recovery by flotation under the condition of non-cyanide removal.The cyanide tailing was processed to obtain qualified Pb concentrate with grade of 56.61% and recovery rate of 89.04%,Zn concentrate with grade of 32.6% and recovery rate of 74.5%.SEM microscopic study shows that the surface of copper mineral is insulated by a thin layer of galena,which changes the interface properties of chalcopyrite,and makes surface characteristics of copper minerals tend to interfacial properties of galena,leading to the majority of copper minerals entering into lead concentrates.

参考文献

[1]  Lu Mingfu,Wen Jianbo.Comprehensive recovery and production practice of cyanidation tailings[J].Gold,2010,31(10):52-54.[路明福,温建波.氰化尾渣综合回收工艺及实践[J].黄金,2010,31(10):52-54.]
[2] Zhu Lei,Kang Guangfeng,Li Shufen,et al.Research on multielement resources of utilizing cyaniding tailings[J].Environment Science and Technology,2010,23(2):5-7,11.[朱磊,康广凤,李淑芬,等.氰化尾渣多元素资源化回收技术研究[J].环境科技,2010,23(2):5-7,11.]
[3] Lü Cuicui,Ding Jian,Fu Guoyan,et al.Present situation and prospect of recovering valuable elements from cyanidation tailing[J].Journal of Chemical Industry and Engineering,2016,67(4):1079-1089.[吕翠翠,丁剑,付国燕,等.氰化尾渣中有价元素回收现状与展望[J].化工学报,2016,67(4):1079-1089.]
[4] Wang Jun,Chen Weiliang,Jiao Zhiliang,et al. Research progress on recovering gold and silver from cyanide residues[J]. Conservation and Utilization of Mineral Resources,2014(4):54-58.[王君,陈为亮,焦志良,等.从氰化尾渣中回收金、银的研究进展[J].矿产保护与利用,2014(4):54-58.]
[5] Weng Zhanping,Yang Junyan,Li Xuelin.Research progress on comprehensive recovery and utilization of cyanide tailings[J].World Nonferrous Metals,2017(4):40-42.[翁占平,杨俊彦,李雪林.氰化尾渣资源综合回收利用研究进展[J].世界有色金属,2017(4):40-42.]
[6] Yang Hongying,Liu Zilong,Tong Linlin,et al.Method for recovery copper,lead and zinc from ultrafine and complicated cyanide tailing:China,104646185A[P].2014- 02-03.[杨洪英,刘子龙,佟琳琳,等.一种从超细复杂氰化尾渣中回收铜铅锌的方法:中国,104646185A[P].2014-02-03.].
[7]  Yang X L,Huang X,Qiu T S.Recovery of zinc from cyanide tailings by flotation[J].Minerals Engineering,2015,84: 100-105.
[8] Chen Qiao,Yang Hongying,Chen Guimin,et al.Application of Knelson gravity concentration in quartz vein type gold beneficiation process in China[J].Gold Science and Techno- logy,2017,25(5):73-79.[陈桥,杨洪英,陈贵民,等.尼尔森重选在我国石英脉型金矿选矿工艺中的应用[J].黄金科学技术,2017,25(5): 73-79.]
[9] Wu Xiangyang.Optimization of pretreatment process for flotation of lead and zinc from cyanidation tailings[J].Metal Mine,2010,39(11):187-188.[吴向阳.氰化尾渣浮选铅锌预处理工艺的优化[J].金属矿山,2010,39(11):187-188.]
[10] Yu Jianwen,Gao Peng,Chen Bo.Experimental study on comprehensive recovery of lead and copper from extremely poor cyanide tailings[J].Mining Research and Development,2015(2):43-46.[余建文,高鹏,陈波.极贫氰化尾渣综合回收铅铜试验研究[J].矿业研究与开发,2015(2):43-46.]
[11] Wu Xiangyang.Zinc leaching tail slag flotation technology optimization study preprocessing[J].Gold Science and Technology,2010,18(5):76-77.[吴向阳.氰化尾渣浮选铅锌预处理工艺技术的优化研究[J].黄金科学技术,2010,18(5):76-77.]
[12]  Lü C C,Ding J,Qian P,et al.Comprehensive recovery of metals from cyanidation tailing[J].Minerals Engineering,2015,70:141-147.
[13]  Qiu T S,Huang X,Yang X L.Recovery of copper from cyanidation tailing by flotation[J].The Journal of the Minerals, Metals  & Materials Society,2016,68(2):548-555.
[14]  Dai X,Simons A,Breuer P.A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores[J].Minerals Engineering,2012,25(1):1-13.
[15]  Dash R R,Gaur A,Balomajumder C.Cyanide in industrial wastewaters and its removal:A review on biotreatment[J]. Journal of Hazardous Materials,2009,163(1):1-11.
[16]  Sutherland K L,Wark I W.Principles of Flotation[M].Perth: Australasian Institute of Mining and Metallurgy,1955:163- 167.
[17]  Prestidge C A,Ralston J,Smart R S C.The role of cyanide in the interaction of ethyl xanthate with galena[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1993,81:103-119.
[18]  Grano S,Ralston J,Smart R S C.Influence of electrochemical environment on the flotation behaviour of Mt. Isa copper and lead-zinc ore[J].International Journal of Mineral Processing,1990,30(1):69-97.
[19]  Wark I W.Principles of Flotation[M].Perth:Australasian Institute of Mining and Metallurgy(ISA),1955:182-233.
[20]  Seke M D,Pistorius P C.Effect of cuprous cyanide,dry and wet milling on the selective flotation of galena and sphalerite[J].Minerals Engineering,2006,19(1):1-11.

文章导航

/