img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

基于金属价格不确定性的地下矿生产计划风险分析

  • 任助理 ,
  • 王李管
展开
  • 1.中南大学资源与安全工程学院,湖南  长沙   410083;
    2.中南大学数字矿山研究中心,湖南  长沙   410083
任助理(1990-),男,河南沈丘人,硕士研究生,从事数字矿山研究工作。renzhuli@yeah.net

收稿日期: 2016-11-12

  修回日期: 2017-03-19

  网络出版日期: 2018-05-18

基金资助

中央高校基本科研业务费专项资金“自然崩落法放矿计划优化方法与可视化编制技术研究”(编号:2016zzts450)和中南大学“创新驱动”项目资助“智能化清洁化现代矿业工程理论与技术”(编号:2015CX005)联合资助

Risk Analysis of Underground Mine Production Scheduling Based on Metal Price Uncertainty

  • REN Zhuli ,
  • WANG Liguan
Expand
  • 1.School of Resources and Safety Engineering,Central South University,Changsha    410083,Hunan,China;
    2.Center of Digital Mine Research,Central South University,Changsha    410083,Hunan,China

Received date: 2016-11-12

  Revised date: 2017-03-19

  Online published: 2018-05-18

摘要

针对采用无底柱分段崩落法生产的地下金属矿山的生产计划编制问题,通过构建以净现值(NPV)最大为目标函数并满足生产能力及空间顺序等约束条件的混合整数规划模型,用于确定各个采场之间开采的先后顺序,其中金属价格的变化不仅影响计划编制结果而且使计划的风险显著增大。根据金属历史价格分布,运用几何布朗运动(GBM)模型预测15条金属价格走势曲线,通过求解生产计划的混合整数规划模型,得到不同价格走势下的生产计划结果,然后根据GBM模型预测更多金属价格走势曲线并分析不同计划结果下的净现值、上涨潜力、风险下限、条件风险价值(CVaR)和风险价值(VaR),最终运用熵值法确定金属价格不确定条件下收益高且风险小的生产计划。经实例验证,此方法科学可行,减少了传统手工方法编制生产计划时受到的价格风险的影响,实现资源低风险高效开采,对指导矿山的实际生产具有重要的意义。

本文引用格式

任助理 , 王李管 . 基于金属价格不确定性的地下矿生产计划风险分析[J]. 黄金科学技术, 2017 , 25(6) : 52 -60 . DOI: 10.11872/j.issn.1005-2518.2017.06.052

Abstract

For the underground metal mine production planning optimization in sublevel caving method,the mixed integer programming model was built with the function of maximizing the net present value (NPV) constraint condition of the production capacity and space order to determine the stope mining sequence.The metal price changes not only affect the planning result,but  also it is difficult to determine the risk of plan and can bring great economic losses in mining enterprises.According to the distribution of metal history price,using the geometric Brownian motion(GBM) model to predict 15 metal price trend curve,the production plan for different price trend curve was gutted by solving the mixed integer programming model,finally the more metal prices curve was predicted by using the GBM model again and analysis the net present value.Upside potential,downside risk,conditional value at risk (CVaR) and the value at risk (VaR) of different planning also was analyzed.Finally by using entropy method to determine the price of metal high yield under uncertainty and risk of small production plan.Verification by the concrete example that the method is scientific and feasible,can reduce the risk of the price when use traditional manual method to prepare production plan,realize low risk high efficiency mining resources,and has an important significance for actual production of the mine.

参考文献

[1] Li Yinglong,Tong Guangxu.Survey of the development of mine production plan scheduling [J].Metal Mine,1994(12):11-16.[李英龙,童光煦.矿山生产计划编制方法的发展概况[J].金属矿山,1994(12):11-16.]
[2] Wang Liguan,Ren Zhuli,Pan Chuanpeng,et al.Optimization analysis of stope mining sequence based on mixed integer programming[J].The Chinese Journal of Nonferrous Metals,2016,26(1):173-179.[王李管,任助理,潘传鹏,等.基于混合整数规划法的采场回采顺序优化分析[J].中国有色金属学报,2016,26(1):173-179.]
[3] Newman A M,Rubio E,Caro R,et al.A review of operations research in mine planning[J].Interfaces,2010,40(3):222-245.
[4] Hu Liuqing,Wang Liguan,Bi Lin.3D Visualization system based production plan scheduling of underground mine[J]. Journal of China Coal Society,2007,32(9):930-933.[胡柳青,王李管,毕林.地下矿山生产计划3D可视化编制技术[J].煤炭学报,2007,32(9):930-933.]
[5] Rehman S U,Asad M W A.A mixed-integer linear programming model for short-range production scheduling of cement quarry operations[J].Asia-Pacific Journal of Operational Research,2010,27(3):315-333.
[6] Pourrahimian Y,Askari-Nasab H,Tannant  D D.A multistep approach for block-cave production scheduling optimization [J].International Journal of Mining Science and Technology,2013,23(5):739-750.
[7] Carlyle W M,Eaves B C.Underground planning at stillwater mining company[J].Interfaces,2001,31(4):50-60.
[8] O’Sullivan D,Newman A.Optimization-based heuristics for underground mine scheduling[J].European Journal of Operational Research,2015,241(1):248-259.
[9] O’Sullivan D,Newman A.Extraction and backfill scheduling in a complex underground mine[J].Interfaces,2014,44(2):204-221.
[10] Martinez M A,Newman A M.A solution approach for optimizing long- and short-term production scheduling at LKAB’s Kiruna mine[J].European Journal of Operational Research,2011,211(1):184-197.
[11] Prieto F J.On modelling planning under uncertainty in manufacturing-discussion[J].Sort,2007,31(2):157-160.
[12] Escudero L F.An algorithmic framework for solving large scale multistage stochastic mixed 0-1problems with nonsymmetric scenario trees[J].Computers & Operations Research,2012,39(5):1133-1144.
[13] Kempf  K G,Keskinocak P, Uzsoy  R.Planning Production and Inventories in the Extended Enterprise[M].Berlin:Springer,2011.
[14] Gao Lu.Stock index geometric Brownian motion simulation and empirical analysis[J].Modern Economic Information,2010(6):18.[高璐.股票指数几何布朗运动模拟及实证分析[J].现代经济信息,2010(6):18.]
[15] Feng Xiaolong.Application and prediction of geometric Brownian motion on Matlab[J].Journal of Computer Applications,2013,33(S1):329-330,334.[冯晓龙.基于Matlab的几何运动布朗模型的应用与预测[J].计算机应用,2013,33(增1):329-330,334.]
[16]  Alonso-Ayuso A,Carvallo F,Escudero  L F,et al.Medium range optimization of copper extraction planning under uncertainty in future copper prices[J].European Journal of Operational Research,2014,233(3):711-726.
[17] Zhang Mingjia.Research on the Application of Mixed Integer Programming in Engineering[D].Wuhan: Huazhong University of  Science and Technology,2005.[张明佳.混合整数规划方法的工程应用研究[D].武汉:华中科技大学,2005.]
[18] Wan Xiaoheng,Wang Xinmin,Zhu Yangya,et al.Optimization of the stope structural parameters based on empowerment combination TOPSIS[J].Gold Science and Techno-
logy,2014,22(5):69-73.[万孝衡,王新民,朱阳亚,等.基于组合赋权TOPSIS法的采场结构参数优选[J].黄金科学技术,2014,22(5):69-73.]

文章导航

/