ISSN 1005-2518
CN 62-1112/TF
采选技术与矿山管理

基于灰色时序组合模型的基坑监测预测

  • 霍成胜 ,
  • 王成栋 ,
  • 孟军海 ,
  • 白国龙
展开
  • 青海省第三地质矿产勘查院,青海  西宁   810029
霍成胜(1967-),男,青海湟中人,高级工程师,从事青藏高原矿产测绘工作.huochengsheng@126.com

收稿日期: 2014-04-20

  修回日期: 2014-07-16

  网络出版日期: 2015-01-22

Monitoring Predication of Foundation Based on Grey Timing Model

  • HUO Chengsheng ,
  • WANG Chengdong ,
  • MENG Junhai ,
  • BAI Guolong
Expand
  • The Third Institute Geological and Mineral Exploration of Qinghai,Xi’ning   810029,Qinghai,China

Received date: 2014-04-20

  Revised date: 2014-07-16

  Online published: 2015-01-22

摘要

基坑监测是确保矿山基坑工程安全实施的必要手段,不同模型所监测到的基坑沉降值存在一定的差异,因而如何选择一种有效的组合模型是准确预测未来某一时刻基坑沉降面临的主要问题。本研究将时间序列预测模型与灰色模型相结合(即灰色时序组合预测模型)应用于某深基坑(基坑深5.7~13.7 m)沉降监测数据分析,预测结果准确可靠。同时,与单一模型(如ARIMA和GM(1,1))的预测结果相比,灰色时序组合模型的预测精度更高,所获得的预测结果与实测值最接近,是一种非常有效的基坑预测方法。

本文引用格式

霍成胜 , 王成栋 , 孟军海 , 白国龙 . 基于灰色时序组合模型的基坑监测预测[J]. 黄金科学技术, 2014 , 22(5) : 79 -83 . DOI: 10.11872/j.issn.1005-2518.2014.05.079

Abstract

Foundation monitoring was necessary methods to ensure the implementation of foundation engineering safety in mines.Because the different models for the settlement of foundation monitoring exists certain difference,therefore,how to select an effective portfolio model that can predict the settlement of foundation pit accurately at a certain time in the future was the main problems.In this research,the time series prediction model and grey model(gray sequence combination forecast model) were employed to a deep foundation pit(5.7~13.7 m deep foundation pit) subsidence monitoring data analysis,and the predicted results were accurate and reliable. Meanwhile,compared with the predicted results of single model(such as ARIMA and GM (1,1)),prediction accuracy of the gray timing sequence model was much higher.The predicted results that we obtained were the closest to the measured values,which presented it was a extremely effective prediction method for foundation pit.

参考文献

[1] 黄红军.GM(1,1)模型在高层建筑物沉降监测中的应用[J].山西建筑,2008,34(14):102-103.
[2] 李炳军,何春花,卢秀霞.基于灰色组合模型的河南省粮食产量预测[J].农业系统科学与综合研究,2008,24(4):411-414,419.
[3] 华博深,秦岩宾,徐朝术,等.灰色线性组合模型在基坑监测中的运用[J].测绘,2011,34(4):163-164,180.
[4] 龚国勇.ARIMA模型在深圳GDP预测中的应用[J].数学的实践与认识,2008,38(4):53-57.
[5] 侯建国,王腾军.变形监测理论与应用[M].北京:测绘出版社,2008:175-176.
[6] 新平.灰色系统模型方法的研究[D].武汉:华中科技大学,2002:35-68.
[7] 王琛艳,郑治.人工神经网络在预测高速公路路基沉降中的应用[J].公路交通科技,2000,(4):7-10.
[8] 胡守仁.神经网络导论[M].长沙:国防科技大学出版社,1993:23-45.

文章导航

/