img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (3): 516-530.doi: 10.11872/j.issn.1005-2518.2023.03.142

• 采选技术与矿山管理 • 上一篇    

外荷载下青砂岩声发射特征及损伤演化规律

王文才1(),李俊鹏1,2(),王创业1,陈世江1,王鹏1   

  1. 1.内蒙古科技大学矿业与煤炭学院,内蒙古 包头 014010
    2.山西工学院能源产业学院,山西 朔州 036000
  • 收稿日期:2022-10-12 修回日期:2023-02-15 出版日期:2023-06-30 发布日期:2023-07-20
  • 通讯作者: 李俊鹏 E-mail:wencai99999@163.com;m15513345261@163.com
  • 作者简介:王文才(1964-),男,内蒙古伊金霍洛旗人,教授,博士生导师,从事采矿及矿山安全工程方面的教学和研究工作。wencai99999@163.com
  • 基金资助:
    国家自然科学基金项目“干燥多风矿区煤矸石山风压渗流及动态排矸自燃危险区判定”(52064043);“矿井高效率通风机站结构及其通风性能的研究”(51764044);“基于监测信息的露天矿边坡稳定性研究”(51464036)

Acoustic Emission Characteristics and Damage Evolution of Green Sandstone Under External Loads

Wencai WANG1(),Junpeng LI1,2(),Chuangye WANG1,Shijiang CHEN1,Peng WANG1   

  1. 1.Institute of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
    2.School of Energy Industry, Shanxi Institute of Technology, Shuozhou 036000, Shanxi, China
  • Received:2022-10-12 Revised:2023-02-15 Online:2023-06-30 Published:2023-07-20
  • Contact: Junpeng LI E-mail:wencai99999@163.com;m15513345261@163.com

摘要:

为分析青砂岩(QSY)在外荷载下的声发射特征及损伤演化规律,在声发射基础上,根据岩石损伤演化的自组织性、丛集行为及幂律分布特性,结合砂岩结构特征、分形理论和Weibull分布函数,建立了青砂岩损伤二维元胞模型。结果表明:青砂岩试样在荷载后期的塑性变形阶段轴向应力曲线发生线性突变是试样发生破坏的最终结果,破坏值为48.5 MPa,该阶段因微裂隙贯通形成大裂隙,存在事件率缺失现象,该现象为试样破坏前兆特征,破坏方式主要为单斜面和双斜面剪切破坏,形成剪切裂纹;试样受载损伤的3个阶段与AE信号表现特征存在类同,在损伤萌生阶段试样因受矿山生产影响内部存在微缺陷,在此阶段形成损伤演化现象,但间隔损伤值为0.41,未达到所建立元胞模型的不稳定损伤值(0.43),未发生破坏;随着损伤值增大至0.599时(大于0.43),试样发生失稳破坏,损伤值快速增长至1。根据岩石损伤演化相关规律和理论建立的二维元胞模型,能够反映青砂岩在外荷载下受力破坏过程和损伤演化规律,为相关研究提供参考和借鉴。

关键词: 渐进破坏, 蠕变劣化, 损伤演化, 弹性变形, 塑性变形, 剪切破坏

Abstract:

As a micro-unit combination of geotechnical engineering, rock will be accompanied by complex AE signals and damage evolution characteristics during the loading process.In order to analyze the AE characteristics and damage evolution law of green sandstone under external load, a two-dimensional damage cell model of green sandstone was established based on acoustic emission,according to the self-organization, clustering behavior and power law distribution characteristics of rock damage evolution,combined with the structural characteristics of sandstone, fractal theory and Weibull distribution function.The results show that: The linear mutation of the axial stress curve of green sandstone sample in the plastic deformation stage at the late loading stage is the final result of the failure of the sample, and the failure value is 48.5 MPa. At this stage, large cracks are formed due to the combination of microcracks,resulting in the absence of event rate.This phenomenon is the precursor feature of the failure of the sample,and the main failure modes are single-bevel shear failure and double-bevel shear failure.The forming crack is shear crack.The three stages of loading damage of the sample are similar to the characteristics of AE signals.In the damage initiation stage, due to the internal microdefects of the sample affected by mine production, damage evolution will be formed at this stage, but the interval damage value is 0.41, which is lower than the unstable damage value of the established cellular model(0.43).No failure or instability failure occurs until the damage deformation stage.When the damage value increases to 0.599 (greater than 0.43), instability failure occurs in the sample, and the damage value rapidly increases to 1.Therefore, it can be concluded that the two-dimensional cellular model established by the relevant laws and theories of rock damage evolution can reflect the mechanical failure process and damage evolution law of bluestones under external loads, which can provide reference for related studies.

Key words: progressive destruction, creep deterioration, damage evolution, elastic deformation, plastic deformation, shear failure

中图分类号: 

  • TD315

图1

岩石试样"

表1

岩石试样基本物理参数"

岩性试样编号直径/mm高度/mm形状
青砂岩QSY149.22100.28圆柱体
QSY249.3299.80圆柱体
QSY349.24100.34圆柱体

图2

单轴压缩声发射试验设备"

图3

纽迈MiniMR-60核磁共振检测仪"

图4

青砂岩试样T2频谱图"

表2

青砂岩孔隙率测试结果"

试样编号体积/cm3信号量孔隙率/%
QSY1190.711 8673.12
QSY2190.571 8773.24
QSY3190.981 9143.71

图5

青砂岩单轴压缩轴向应力—时间曲线"

表3

青砂岩试样轴向应力试验结果"

岩性试样编号单轴抗压强度σc/MPa平均值σˉc/MPa
青砂岩(QSY)QSY148.548.7
QSY247.7
QSY349.8

图6

AE原始波形处理流程图"

图7

外荷载下青砂岩时域信号演化关系图"

图8

AE主频、轴向应力随时间演化特征图"

表4

青砂岩试样AE信号试验结果"

参数名称青砂岩试样及试验结果
QSY1QSY2QSY3
阶段Ⅰ累积事件数/个3 6813 5733 812
阶段Ⅰ累积能量/[(mV·μs) ·s-12.81×1052.73×1052.93×105
阶段Ⅱ累积事件数/个9 3818 7689 627
阶段Ⅱ累积能量/[(mV·μs)·s-15.79×1055.42×1055.91×105
阶段Ⅲ累积事件数/个14 37913 69415 098
阶段Ⅲ累积能量/[(mV·μs)·s-19.07×1058.46×1059.24×105

表5

青砂岩试样AE主频试验结果"

主频类型青砂岩试样及试验结果
QSY1QSY2QSY3
高频/kHz117~241122~250120~248
中频/kHz42~11744~12244~120
低频/kHz0~420~440~44

图9

AE信号时序参数裂纹分类示意图"

图10

AE信号时序参数RA-AF分布图"

图11

青砂岩试样破坏形态"

图12

试样不同破坏特征示意图"

图13

元胞自动机构成示意图"

图14

常见的元胞空间结构"

图15

Moore型元胞邻居模型"

图16

元胞单元受力模型图"

图17

元胞单元重整化示意图"

表6

元胞单元破坏模型分类(个)"

被破坏

单元胞数

被破坏

单元数量

未被破坏

单位数量

应力扩散元胞相邻已损坏元胞数
1234
0010000
10924000
21620602200
36816283680
4120601681
512510040
68400000
73600000
8900000
9100000

图18

青砂岩损伤演化过程"

Cai M, Kaiser P K, Morioka H,et al,2007.FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,44(4):550-564.
Cai Y D, Liu D M, Pan Z K,et al,2013.Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance[J].Fuel,108:292-302.
Chang Xinke,2021.Multi-parameter Coupling Analysis of Acoustic Emission in Different Rock Failure[D].Baotou:Inner Mongolia University of Science and Technology.
Chen Guoqing, Zhao Cong, Wei Tao,et al,2018.Evaluation method of brittle characteristics of rock based on full stress-strain curve and crack initiation stress[J].Chinese Journal of Rock Mechanics and Engineering,37(1):591-597.
Chen Zhonghui, Tan Guohuan, Yang Wenzhu,2002.Renormalization study and numerical simulation on brittle failure of rocks[J].Chinese Journal of Geotechnical Engineering,24(2):184-187.
Coates G,Xiao Lizhi,Prammer M,2007.NMR Logging Principles and Application[M].Meng Transl.Beijing:Petroleum Industry Press:36-39.
Dong Zhikai, Li Haoran, Ouyang Zuolin,et al,2019.Reserch on temporal and spatial evolution characteristics of acoustic emission of marble under uniaxial compression[J].Chinese Journal of Underground Space and Engineering,15(Supp.2):609-615.
Fan L F, Gao J W, Wu Z J,et al,2018.An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J].Applied Thermal Engineering,140:505-519.
Gong Yuxin, He Manchao, Wang Zhenghong,et al,2013.Research on time-frequency analysis algorithm and instantaneous frequency precursors for acoustic emission data from rock failure experiment[J].Chinese Journal of Rock Mechanics and Engineering,32(4):787-799.
Ji Hongguang, Wang Hongwei, Cao Shanzhong,et al,2012.Experimental research on frequency characteristics of acoustic emission signals under uniaxial compression of granite[J].Chinese Journal of Rock Mechanics and Engineering,31(Supp.1):2900-2905.
Kaiser E J,1959.A Study of Acoustic Phenomena in Tensile Test[D].Munchen:Technisce Hochschule.
Li Jielin, Zhou Keping, Zhang Yamin,et al,2012.Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on Nuclear magnetic resonance technology[J].Chinese Journal of Ro-ck Mechanics and Engineering,31(6):1208-1214.
Li Shenglin, Zhang Qingcheng, Wu Shuaifeng,et al,2017.Theoretical study and SHPB experimental verification on the critical damage of uniform sandstone [J].Journal of Beijing Institute of Technology,37(8):807-812,823.
Li Shizhang,2021.Experimental Study on the Influence of Freeze-thaw Cycles on Physical and Mechanical Properties of Sandstone[D].Baotou:Inner Mongolia University of Science and Technology.
Li X B, Cao W Z, Zhou Z L,et al,2014.Influence of stress path on excavation unloading response[J].Tunnelling and Underground Space Technology,42:237-246.
Li Yuanhui, Liu Jianpo, Zhao Xingdong,et al,2009.Study on b-value and fractal dimension of acoustic emission during rock failure process[J].Rock and Soil Mechanics,30(9):2559-2563,2574.
Liang Hui, Zou Ronghua, Peng Gang,et al,2016.Damage constitutive model of concrete based on Weibull statistical theory[J].Journal of Yangtze River Scientific Research Institute,33(2):111-114.
Liu Jianpo, Liu Zhaosheng, Wang Shaoquan,et al,2015.Analysis of acoustic emission source mechanisms for tensile and shear cracks of rock fractures[J].Journal of Northeastern University(Natural Science),36(11):1624-1628.
Ma Zhitao, Tan Yunliang,2005.Simulation study of rock failure based on MH-PCA model[J].Chinese Journal of Rock Mechanics and Engineering,24(15):2704-2708.
Mao Siyu, Cao Ping, Li Jianxiong,et al,2020.Fatigue damage analysis of fractured sandstone based on nuclear magnetic resonance T2 spectrum[J].Gold Science and Technology,28(3):430-441.
Bolati Samuhaer, Zhou Xinjie, Hao Ming,et al,2020.Discussion on evacuation model based on cellular automata[J].Safety and Environmental Engineering,27(5):122-127.
Tan Yunliang, Zhou Hui, Wang Yongjia,et al,2001.Physical cellular automata theory for simulating the failure evolution of mesoscopic heterogeneous materials[J].Journal of Physics,50(4):704-710.
Wang Chuangye, Chang Xinke, Liu Yilin,et al,2020.Spectrum evolution characteristics of acoustic emission during the rupture process of marble under uniaxial compression condition[J].Rock and Soil Mechanics,41(Supp.1):51-62.
Wolfram S,1983.Statistical mechanics of cellular automata[J].Reviews of Modern Physics,55(3):601-643.
Wu Xianzhen, Liu Jianwei, Liu Xiangxin,et al,2015.Study on the coupled relationship between AE accumulative ring-down count and damage constitutive model of rock[J].Journal of Mining and Safety Engineering,32(1):28-41.
Wu Xianzhen, Liu Xiangxin, Liang Zhengzhao,et al,2012.Experimental study of fractal dimension of AE serials of different rocks under uniaxial compression[J].Rock and Soil Mechanics,33(12):3561-3569.
Yan Zhangcheng, Sun Hui, Li Liping,et al,2020.Acoustic emission characteristics in dry and water-saturated limestones under uniaxial compression[J].Journal of Yangtze River Scientific Research Institute,37(4):109-114,121.
Yang Ming, Liu Lei, Zhang Xuebo,et al,2021.Nuclear magnetic resonance experimental study on pore structure and fluid characteristics of coal at different ranks[J].China Safety Science Journal,31(1):81-88.
Yang S Q, Jing H W, Li Y S,et al,2011.Experimental investigation on mechanical behavior of coarse marble under six diffe-rent loading paths[J].Experimental Mechanics,51:315-334.
Yu Jie, Liu Xiaohui, Hao Qijun,2020.Acoustic emission characteristics and damage evolution of coal and rock under different confining pressures[J].Coal Geology and Exploration,48(3):128-136.
Zhang Anbin, Liu Xiangxin, Zhang Yanbo,et al,2017.Experimental research on acoustic emission characteristics of argillaceous siltstone failure under different moisture contents[J].Chinese Journal of Underground Space and Engineering,13(3):51-59.
Zhang Changda, Pan Yuling,2006.Some views on petrophysical interpretation of SNMR date[J].Chinese Journal of Engineering Geophysics,3(1):1-8.
Zhang Dongming, Bai Xin, Yin Guangzhi,et al,2018.Analysis of acoustic emission parameters and energy dissipation characteristics and damage evolution of bedding rock failure process under uniaxial compression[J].Journal of China Coal Society,43(3):646-656.
Zhang Huimei, Lei Lina, Yang Gengshe,2014.Research on rock statistical damage model and determination of parameters[J].Journal of Hunan University of Science and Technology(Natural Science Edition),29(3):29-32.
Zhang J, Li Y W, Che M G,et al,2018.Energy-based brittleness index and acoustic emission characteristics of anisotropic coal under triaxial stress condition[J].Rock Mechanics and Rock Engineering,51(11):3343-3360.
Zhang J, Peng W H, Liu F Y,et al,2016.Monitoring rock failure processes using the Hilbert-Huang transform of acoustic emission signals[J].Rock Mechanics and Rock Engineering,49(2):427-442.
Zhang Lei,2011.The Study on the Whole Process of Concrete Uniaxial Load by Acoustic Emission Experimental[D].Beijing:China University of Geosciences(Beijing).
Zhang Penghai,2015.Study on Precursory Law Prior to Rock Failure Based on Acoustic Emission Time Order[D].Shenyang:Northeastern University.
Zhang Yanbo, Zhang Hang, Liang Peng,et al,2019.Experimental research on time-frequency characteristics of AE P-wave and S-wave of granite under failure process[J].Chinese Journal of Rock Mechanics and Engineering,38(Supp.2):3554-3564.
Zhao Hongbao, Yin Guangzhi,2011.Study of acoustic emission characteristics and damage equation of coal containing gas[J].Rock and Soil Mechanics,32(3):667-671.
Zhao Hongbao, Yin Guangzhi,2011.Study of acoustic emission characteristics and damage equation of coal containing gas[J].Rock and Soil Mechanics,32(3):29-32.
Zhou Keping, Li Jielin, Xu Yujuan,et al,2012.Experimental study on nuclear magnetic resonance characteristics of rock under freeze-thaw cycles[J].Chinese Journal of Rock Mechanics and Engineering,31(4):731-737.
Zhou Yu, Wu Shunchuan, Xu Xueliang,et al,2013.Particle flow analysis of acoustic emission characteristics during rock fracture[J].Chinese Journal of Rock Mechanics and Engineering,32(5):951-959.
Zuo Jianping, Pei Jianliang, Liu Jianfeng,et al,2011.Investigation on acoustic emission behavior and its time-space evolution mechanism in failure process of coal-rock combined body[J].Chinese Journal of Rock Mechanics and Engineering,30(8):1564-1570.
常新科,2020.不同岩石破裂声发射多参量耦合分析[D].包头:内蒙古科技大学.
陈国庆,赵聪,魏涛,等,2018.基于全应力—应变曲线及起裂应力的岩石脆性特征评价方法[J].岩石力学与工程学报,37(1):591-597.
陈忠辉,谭国焕,杨文柱,2002.岩石脆性破裂的重正化研究及数值模拟[J].岩土工程学报,24(2):184-187.
Coates G,肖立志,Prammer M,2007.核磁共振测井原理与应用[M].孟繁萤译.北京:石油工业出版社:36-39.
董志凯,李浩然,欧阳作林,等,2019.单轴荷载下大理岩声发射时空演化特征研究[J].地下空间与工程学报,15(增2):609-615.
宫宇新,何满潮,汪政红,等,2013.岩石破坏声发射时频分析算法与瞬时频率前兆研究[J].岩石力学与工程学报,32(4):787-799.
纪洪广,王宏伟,曹善忠,等,2012.花岗岩单轴受压条件下声发射信号频率特征试验研究[J].岩石力学与工程学报,31(增1):2900-2905.
李杰林,周科平,张亚民,等,2012.基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J].岩石力学与工程学报,31(6):1208-1214.
李胜林,张青成,吴帅峰,等,2017.均质砂岩损伤临界值的研究及SHPB试验验证[J].北京理工大学学报,37(8):807-812,823.
李仕璋,2021.冻融循环对砂岩物理力学影响的试验研究[D].包头:内蒙古科技大学.
李元辉,刘建坡,赵兴东,等,2009.岩石破裂过程中的声发射 b值及分形特征研究[J].岩土力学,30(9):2559-2563,2574.
梁辉,邹荣华,彭刚,等,2016.基于Weibull统计理论的混凝土率型损伤本构模型研究[J].长江科学院院报,33(2):111-114.
刘建坡,刘召胜,王少泉,等,2015.岩石张拉及剪切破裂声发射震源机制分析[J].东北大学学报(自然科学版),36(11):1624-1628.
马志涛,谭云亮,2005.岩石破坏演化细观非均质物理元胞自动机模拟研究[J].岩石力学与工程学报,24(15):2704-2708.
毛思羽,曹平,李建雄,等,2020.基于核磁共振T2谱图的裂隙砂岩疲劳损伤分析[J].黄金科学技术,28(3):430-441.
萨木哈尔·波拉提,邹馨捷,郝明,等,2020.基于元胞自动机的人员疏散模型探讨[J].安 全 与 环 境 工 程,27(5):122-127.
谭云亮,周辉,王泳嘉,等,2001.模拟细观非均质材料破坏演化的物理元胞自动机理论[J].物理学报,50(4):704-710.
王创业,常新科,刘沂琳,等,2020.单轴压缩条件下大理岩破裂过程声发射频谱演化特征实验研究[J].岩土力学,41(增1):51-62.
吴贤振,刘建伟,刘祥鑫,等,2015.岩石声发射振铃累计计数与损伤本构模型的耦合关系探究[J].采矿与安全工程学报,32(1):28-41.
吴贤振,刘祥鑫,梁正召,等,2012.不同岩石破裂全过程的声发射序列分形特征试验研究[J].岩土力学,33(12):3561-3569.
闫章程,孙辉,李利平,等,2020.灰岩单轴压缩过程中干燥与饱水状态对声发射特征的影响[J].长江科学院院报,37(4):109-114,121.
杨明,柳磊,张学博,等,2021.不同阶煤孔隙结构与流体特性的核磁共振试验研究[J].中国安全科学学报,31(1):81-88.
余洁,刘晓辉,郝齐钧,2020.不同围压下煤岩声发射基本特性及损伤演化[J].煤田地质与勘探,48(3):128-136.
张安斌,刘祥鑫,张艳博,等,2017.不同含水率泥质粉砂岩破裂声发射特性试验研究[J].地下空间与工程学报,13(3):51-59.
张昌达,潘玉玲,2006.关于地面核磁共振方法资料岩石物理学解释的一些见解[J].工程地球物理学报,3(1):1-8.
张东明,白鑫,尹光志,等,2018.含层理岩石单轴损伤破坏声发射参数及能量耗散规律[J].煤炭学报,43(3):646-656.
张慧梅,雷利娜,杨更社,2014.基于Weibull统计分布的岩石损伤模型[J].湖南科技大学学报(自然科学版),29(3):29-32.
张檑,2011.混凝土单向受载全过程的声发射试验研究[D].北京:中国地质大学(北京).
张鹏海,2015.基于声发射时序特征的岩石破裂前兆规律研究[D].沈阳:东北大学.
张艳博,张行,梁鹏,等,2019.花岗岩破裂过程声发射横、纵波时频特征实验研究[J].岩石力学与工程学报,38(增2):3554-3564.
赵宏宝,尹光志,2011.含瓦斯煤声发射特性试验及损伤方程研究[J].岩土力学,32(3):29-32.
赵洪宝,尹光志,2011.含瓦斯煤声发射特性试验及损伤方程研究[J].岩土力学,32(3):667-671.
周科平,李杰林,许玉娟,等,2012.冻融循环条件下岩石核 磁共振特性的试验研究[J].岩石力学与工程学报,31(4):731-737.
周喻,吴顺川,徐学良,等,2013.岩石破裂过程中声发射特性的颗粒流分析[J].岩石力学与工程学报,32(5):951-959.
左建平,裴建良,刘建锋,等,2011.煤岩体破裂过程中声发射行为及时空演化机制[J].岩石力学与工程学报,30(8):1564-1570.
[1] 王晓军,钟启平,胡凯建,汪豪,王宇,李立浩,冯亮. 离子吸附型稀土矿剪切力学特性及微震信号特征[J]. 黄金科学技术, 2022, 30(6): 912-922.
[2] 靳少博,刘科伟,黄进,靳绍虎. 单轴压缩下充填体损伤本构模型研究[J]. 黄金科学技术, 2021, 29(4): 555-563.
[3] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[4] 饶运章,李雪珍. 基于实际冲击能量指数(W)的岩爆预测技术研究[J]. 黄金科学技术, 2015, 23(4): 63-67.
[5] 赵海滨,田红彪,张希兵,韦定君,田璐. 新疆清水泉金矿床控矿因素及找矿标志[J]. 黄金科学技术, 2013, 21(5): 28-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 常春郊,范俊杰,刘桂阁,陈勇敢,马德锡. 甘肃党河南山鸡叫沟矿体地质特征[J]. J4, 2008, 16(2): 5 -11 .
[2] 柳志进,张维昕. 莱西市山后金矿成矿地质条件及资源潜力分析[J]. J4, 2008, 16(2): 18 -23 .
[3] 庄勇. 喏嘿欠地区铜锡矿成矿特征及找矿标志[J]. J4, 2007, 15(6): 35 -37 .
[4] 刘洪君, 刘喜友. 额尔古纳——呼伦深断裂带的形成发展及其对矿产的控制作用[J]. J4, 2007, 15(1): 10 -13 .
[5] 刘喜友, 刘洪军, 代文玉. 黑龙江省老柞山金矿床东矿带东部水文地质特征[J]. J4, 2007, 15(2): 9 -14 .
[6] 符永际. 含碳矿石中金的分析测定[J]. J4, 2008, 16(6): 42 -43 .
[7] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[8] 黄广平, 杨增武, 董传统. 黑龙江金场沟区铜钼矿成矿地质条件分析[J]. J4, 2007, 15(3): 24 -27 .
[9] 李国清, 王海波, 王满仓, 胡乃联. 基于工作流的矿山企业备件管理信息系统[J]. J4, 2009, 17(2): 63 -67 .
[10] 王学明. 金在矿物或岩石中赋存状态研究新进展[J]. J4, 1995, 3(4): 10 -12 .