img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (2): 175-189.doi: 10.11872/j.issn.1005-2518.2023.02.121

• 关键金属矿产勘查进展专栏 • 上一篇    下一篇

东昆仑驼路沟矿床中钴成矿过程的矿物学示踪

王智琳1(),张凯1,许德如2,邹少浩2,王宇非1   

  1. 1.中南大学地球科学与信息物理学院,有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083
    2.东华理工大学省部共建核资源与环境国家重点实验室,江西 南昌 330013
  • 收稿日期:2022-09-18 修回日期:2022-12-13 出版日期:2023-04-30 发布日期:2023-04-27
  • 作者简介:王智琳(1984-),女,山西运城人,副教授,从事成因矿物学与矿床地球化学研究工作。wangzhilin1025@163.com
  • 基金资助:
    国家自然科学基金项目“湘东北地区钴铜多金属成矿作用研究”(41672077);湖南省自然科学基金项目“长沙—平江钴矿带钴的精细成矿过程与富集机制”(2021JJ30817)

Mineralogical Fingerprints of Co Metallogenesis in the Tuolugou Deposit,East Kunlun Orogen

Zhilin WANG1(),Kai ZHANG1,Deru XU2,Shaohao ZOU2,Yufei WANG1   

  1. 1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
    2.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
  • Received:2022-09-18 Revised:2022-12-13 Online:2023-04-30 Published:2023-04-27

摘要:

东昆仑是我国西部重要的金、铜、铁、钴、镍多金属成矿带,其中,驼路沟钴(金)矿床是西北地区发现的首例大型独立钴矿床,目前关于该矿床中钴的成矿过程尚存在争议。在详细野外地质调查和岩(矿)相学观察的基础上,结合EPMA和EBSD分析,将驼路沟钴成矿过程划分为喷流沉积期和叠加改造期,喷流沉积期形成了细粒富钴黄铁矿(PyⅠ),叠加改造期包括细粒富钴黄铁矿(PyⅡ)+辉砷钴矿—辉砷镍矿+硫镍钴矿+磁黄铁矿+少量黄铜矿阶段和半自形—他形粗粒贫钴黄铁矿(PyⅢ)+自然金阶段。其中,PyⅠ中钴含量为0.03%~4.86%,PyⅡ中钴含量为0.38%~2.74%,PyⅢ中钴含量为0.03%~0.58%,流体耦合的溶解再沉淀机制是黄铁矿复杂环带的重要形成机制。上述矿物学研究表明:钴在驼路沟矿床中以独立矿物和富钴黄铁矿2种形式赋存,喷流沉积成矿作用和后期构造变形叠加改造作用是驼路沟矿床中钴富集成矿的2个重要过程。

关键词: 钴, 黄铁矿, 辉砷钴矿, 富集成矿, 驼路沟矿床, 东昆仑成矿带

Abstract:

The demand for cobalt metals has accelerated due to the increased use of cobalt in high-technology industries,thus the security supply of cobalt ore resources has attracted attention worldwide.Cobalt,as one of the critical metals,is in an acute shortage in China.The East Kunlun Orogen is a significant Au-Cu-Fe-Co-Ni-Pb-Zn polymetallic metallogenic belt in western China.The Tuolugou Co(Au) deposit has great reputation as the first large independent cobalt deposit discovered in the northwestern China,whereas the understanding of the metallogenic process of Co is controversial.By combining EPMA and EBSD analyses,together with the field investigation and detailed microscopic observation,the paper revealed the sedimentary exhalative mineralization and superimposed reworking process responsible for the formation of the Tuolugou deposit.The sedimentary exhalative mineralization formed the fine-grained pyrite(PyⅠ),and the superimposed reworking process consists of two mineralizing stages,i.e.,fine-grained pyrite (PyⅡ)+cobaltite+gersdorffite+siegenite+pyrrhotite+minor chalcopyrite stage and coarse-grained pyrite (PyⅢ)+native Au stage.The three generations of pyrite have different chemical compositions,of which PyⅠ has Co contents ranging from 0.03% to 4.86%,PyⅡ ranging from 0.38% to 2.74% and PyⅢ ranging from 0.03% to 0.58%.The obvious negative correlations of Co with Fe uncover that Co exists in the pyrite lattice by stoichiometric substitution of Fe.These results concluded that Co occurs as either independent minerals(e.g.,cobaltite,gersdorffite and siegenite) or cobaltiferous pyrite in the Tuolugou deposit.The EMPA mappings depict that pyrite has complicated textural and chemical compositions,which suggest that the composite pyrite grains were formed by fluid-mediated coupled dissolution-reprecipitation reactions according to the sharp contact boundaries,the distinct chemical compositions,and the consistent morphology and crystallographic orientation among different generations of pyrite in EBSD inverse maps.In combination with the previous work,it is deduced that both the sedimentary exhalative mineralization and subsequent reworking process contributed Co mineralization in the Tuolugou deposit.This study provides a useful guide for the Co mineral exploration and efficient metallurgy in the eastern Kunlun Orogenic Belt.

Key words: cobalt, pyrite, cobaltite, enrichment and mineralization, Tuolugou deposit, east Kunlun Orogen

中图分类号: 

  • P618.62

图1

东昆仑大地构造位置(a)及区域地质图(b)(修改自丰成友等,2004)NKL.F-昆北断裂;CKL.F-昆中断裂;SKL.F-昆南断裂;NBH.F-北巴颜喀拉断裂;Ⅰ-昆北带;Ⅱ-昆中带;Ⅲ-昆南带;Ⅳ-阿尼玛卿带;Ⅴ-北巴颜喀拉带;1.太古宇;2.中—古元古界;3.新元古界;4.奥陶系;5.泥盆系;6.石炭—二叠系;7.前华力西期花岗岩;8.华力西期花岗岩;9.印支期花岗岩"

图2

驼路沟矿床地质简图(修改自奎明娟等,2019)1.第四系;2.纳赤台群哈拉巴依沟组第二岩性段:斑点状碳质千枚岩、板岩夹粉砂岩、薄层灰岩纳赤台群;3.纳赤台群哈拉巴依沟组第三岩性段:绿泥绢云石英片岩、石英片岩和石英钠长岩;4.纳赤台群哈拉巴依沟组第四岩性段:绿泥绢云母石英片岩、变砂砾岩和石英钠长岩;5.大理岩透镜体;6.花岗斑岩;7.石英钠长岩带;8.矿化蚀变带及编号;9.钴矿体及编号;10.金矿化体;11.韧性剪切带;12.背斜轴;13.向斜轴;14.镜铁矿化;15.勘探线"

图3

驼路沟矿床108勘探线剖面图(修改自奎明娟等,2019)1.石英钠长岩;2.绿泥石绢云母石英片岩;3.矿体及编号;4.平硐;5.钻孔;6.矿种(矿体)的平均品位/真厚度"

图4

驼路沟矿床南、北矿带典型矿石和围岩蚀变矿化特征(a)南矿带短沟钴矿体产状较陡,围岩为石英钠长岩和绿泥石千枚岩;(b)南矿带黄铁矿化的石英钠长岩;(c)细粒黄铁矿呈浸染状分布在条带状石英钠长岩中;(d)糜棱岩化的钴矿石;(e)北矿带破碎带中的含钴镜铁矿矿体;(f)北矿带镜铁矿矿石,可见片状镜铁矿呈揉皱状胶结含浸染状黄铁矿的变石英砂岩角砾;(g)北矿带镜铁矿脉切穿含钴变石英砂岩;(h)硅化和菱铁矿化含自然金矿石;Py-黄铁矿;Qtz-石英;Spc-镜铁矿;Ab-钠长石;Sd-菱铁矿"

图5

驼路沟矿床硫化物的矿物学特征(a)PyⅠ呈自形—半自形粒状产出,反射光;(b)细粒PyⅠ的韵律环带结构,为伽玛增强的反射图像;(c)~(d)糜棱岩化矿石中硫化物矿物具明显的定向排列,其中(c)为透射正交偏光,(d)为反射光;(e)辉砷钴矿与富钴的PyⅡ交代了贫钴的PyⅠ,为伽玛增强的反射图像;(f)由PyⅠ、PyⅡ和PyⅢ这3个世代黄铁矿组成的复合黄铁矿颗粒,PyⅠ孔洞和包裹体发育,PyⅡ和PyⅢ交代或增生于PyⅠ边部,为伽玛增强的反射图像;(g)自形硫镍钴矿与富钴黄铁矿PyⅡ共生,反射光;(h)~(i)半自形—他形粗粒PyⅢ,裂隙发育,裂隙间可见自然金,赤铁矿沿裂隙交代;Py-黄铁矿;Cbt-辉砷钴矿;Sig-硫镍钴矿;Mus-白云母;Ccp-黄铜矿;Au-自然金;Hem-赤铁矿"

表1

驼路沟矿床中黄铁矿的电子探针化学成分分析结果"

矿物世代样品编号元素总含量
SFeCoNiAsSePbSb
PyⅠ13D3J0953.4444.291.900.360.12--0.01100.12
13D3J0853.2044.761.860.230.100.01-0.01100.17
13D3J1253.5045.111.670.280.10---100.66
13D3J1352.4046.560.960.090.34-0.04-100.39
N80353.4741.534.860.350.320.01-0.01100.55
N80451.6345.371.080.460.22-0.020.0198.79
N80553.1642.684.220.130.260.01-0.01100.47
N80753.6742.783.830.050.390.020.07-100.81
N81153.0541.984.590.130.30---100.05
N80252.7146.390.070.710.210.02--100.11
14D11952.1147.360.030.010.35---99.86
14D11352.5647.480.050.040.100.010.03-100.27
14D10953.1447.060.120.240.200.03--100.79
13D1-1-153.0747.000.160.030.19---100.45
13D1-1-253.1847.260.130.060.240.020.020.02100.93
13D1-1-353.2147.390.150.010.22-0.01-100.99
13D1-1-453.1546.700.330.130.21-0.04-100.56
13D3J0152.9847.510.05-0.290.020.01-100.86
13D3J0353.4447.200.050.030.20---100.92
13D3J0752.7047.480.06-0.26-0.060.02100.58
13D3JB150.3244.560.861.463.26---100.46
PyⅡ13D3J0052.7247.030.380.090.38-0.02-100.62
13D3J1152.4146.880.680.070.180.01--100.23
14D11752.7345.102.100.270.140.03--100.37
14D11552.8044.971.960.240.130.01-0.01100.12
14D12052.4445.391.800.260.110.020.03-100.05
14D11652.5845.671.090.190.100.010.010.0199.66
14D1653.1243.792.740.330.220.01--100.21
14D11054.2444.511.440.330.180.02-0.02100.74
14D11253.0745.011.510.330.19---100.11
14D11852.8845.980.960.190.130.020.03-100.19
PyⅢTLG8DA352.7146.770.47-0.47-0.040.01100.47
TLG8DA353.0946.880.12-0.23--0.02100.34
TLG8DA354.2345.430.120.640.17-0.05-100.64
TLG8DA353.8846.010.220.230.18-0.02-100.54
TLG8DA353.8945.860.580.100.38-0.020.01100.84
TLG8DA353.2546.710.240.270.22--0.03100.72
TLG12D151.6846.890.200.140.210.01--99.13
TLG12D153.3746.060.030.030.830.010.050.01100.39
TLG16D153.6646.750.090.030.19-0.010.01100.74
TLG17D252.2646.470.380.210.18-0.06-99.56

图6

不同世代黄铁矿的元素含量箱线图"

图7

驼路沟矿床黄铁矿的元素相关性图解注:图(c)中变质成因和热液成因富钴黄铁矿数据分别来自Wang et al.(2015)和Wang et al.(2022c);其余数据修改自卢宜冠等(2021)"

图8

驼路沟矿床黄铁矿的电子探针元素面扫描图像"

图9

驼路沟矿床黄铁矿的EBSD相图(a)和反极图(b)"

Ahmed A H, Arai S, Ikenne M,2009.Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer,Anti-Atlas,Morocco[J].Economic Geology,104(2):249-266.
Altree-Williams A, Pring A, Ngothai Y,et al,2015.Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials[J].Earth-Sci-ence Reviews,15:628-651.
Barrie C D, Boyce A J, Boyle A P,et al,2009.Growth controls in colloform pyrite[J].American Mineralogist,94(4):415-429.
Borg S, Liu W, Pearce M,et al,2014.Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces[J].Geology,42:415-418.
Bralia A, Sabatini G, Troja F,1979.A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J].Mineralium Deposita,14(3):353-374.
Clark C, Grguric B, Mumm A S,2004.Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia[J].Ore Geology Reviews,25(3/4):237-257.
Deditius A P, Utsunomiya S, Renock D,et al,2008.A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance[J].Geochimica et Cosmochimica Acta,72(12):2919-2933.
Dill H G, Botz R,1989.Lithofacies variation and unconformities in the metalliferous rocks underlying the Permian Kupferschiefer of the Stockheim Basin,Federal Republic of Germany[J].Economic Geology,84(5):1028-1046.
Dong Y, Sun S, Santosh M,et al,2021.Central China orogenic belt and amalgamation of East Asian continents[J].Gondwana Research,100:131-194.
Duan Jun, Qian Zhuangzhi, Huang Xifeng,et al,2014.Characteristics of ore minerals of De’erni Cu (Co) deposit in Qinghai and their geological significance[J].Journal of Earth Sciences and Environment,36(1):201-209.
El Desouky H A, Muchez P, Cailteux J,2009.Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga copper belt,Democratic Republic of Congo[J].Ore Geology Reviews,36:315-332.
Feng C Y, Qu W J, Zhang D Q,et al,2009.Re-Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit,eastern Kunlun Orogenic Belt,northwestern China[J].Ore Geology Reviews,36:213-220.
Feng Chengyou, Zhang Dequan, Dang Xingyan,et al,2005.SHRIMP zircon U-Pb dating of quartz albitite from the Tuolugou cobalt (gold) deposit,Golmud,Qinghai,China—Constraints on the age of the Naij Tal Group[J].Geological Bulletin of China,24(6):501-505.
Feng Chengyou, Zhang Dequan, Qu Wenjun,et al,2006a.Re-Os isotopic dating of pyrite in the Tuolugou SEDEX cobalt (gold) deposit,Golmud,Qinghai Province[J].Acta Geologica Sinica,80(4):571-576.
Feng Chengyou, Zhang Dequan, She Hongquan,et al,2006b.Tectonic setting and metallogenic mechanism of Tuolugou cobalt (gold) deposit,Qinghai Province[J].Mineral Deposits,25(5):544-561.
Feng Chengyou, Zhang Dequan, Wang Fuchun,et al,2004.Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in east Kunlun Area,Qinghai Province[J].Acta Geoscientica Sinica,25(4):415-422.
Fougerouse D, Micklethwaite S, Tomkins A G,et al,2016.Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J].Geochimica et Cos-mochimica Acta,178:143-159.
Fougerouse D, Reddy S M, Aylmore M,et al,2021.A new kind of invisible gold in pyrite hosted in deformation-related dislocations[J].Geology,49(10):1225-1229.
Griffin W L, Begg G C, O’reilly S Y,2013.Continental-root control on the genesis of magmatic ore deposits[J].Nature Geoscience,6(11):905-910.
Horn S, Gunn A G, Petavratzi E,et al,2021.Cobalt resources in Europe and the potential for new discoveries[J].Ore Geology Reviews,130:103915.
Jian X, Weislogel A, Pullen A,et al,2020.Formation and evolution of the Eastern Kunlun Range,northern Tibet:Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J].Gondwana Research,83:63-79.
Jiao Jiangang, Huang Xifeng, Yuan Haichao,et al,2009.Progress in the research of De’erni Cu (Co) ore deposit[J].Journal of Earth Sciences and Environment,31(1):42-47.
Kui Mingjuan, Zhang Aikui, Liu Yongle,et al,2019.The geological characteristics and prospecting mode of Tuolugou cobalt deposit,Qinghai[J].Mineral Exploration,10(1):57-64.
Large R R, Danyushevsky L, Hollit C,et al,2009.Gold and trace element zonation in pyrite using a laser imaging technique:Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits[J].Economic Geology,10(5):635-668.
Large R R, Maslennikov V V, Robert F,et al,2007.Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit,Lena gold province,Russia[J].Economic Geology,102(7):1233-1267.
Li Houmin, Shen Yuanchao, Hu Zhengguo,2000.Geological characteristics of Tuolugou cobalt (Au) deposit in east Kunlun,Qinghai Province:A new type of cobalt (Au) deposit related to sodium-rich volcanic rocks[J].Bulletin of Mineralogy,Petrology and Geochemistry,19(4):321-322.
Li Houmin, Shen Yuanchao, Hu Zhengguo,et al,2001.Geology of Tuolugou cobalt (gold) deposit in East-Kunlun Mountains,Qinghai Province,and the first discussion on its genesis[J].Geology and Exploration,37(1):60-64,95.
Liu Yongle, Zhang Aikui, Liu Zhigang,et al,2022.Metallogenic model of gold deposits and genetic types in the western section of east Kunlun,Qinghai Province[J].Gold Science and Technology,30(4):483-497.
Lu Yiguan, Tu Jiarun, Sun Kai,et al,2021.Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian copper belt,Central Africa[J].Earth Science Fro-ntiers,28(3):338-354.
Lund K, Tysdal R G, Evans K V,et al,2011.Structural controls and evolution of gold-,silver-,and REE-bearing copper-cobalt ore deposits,Blackbird district,east-central Idaho:Epigenetic origins[J].Economic Geology,106:585-618.
Michel D, Giuliani G, Olivo G R,1994.As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments,Goias State,Brazil[J].Economic Geology,89:193-200.
Pan Tong,2005.Study on the Metallogenic Series of Cobalt Deposits in Eastern Kunlun Orogenic Belt[D].Changchun:Jilin University.
Pan Y, Therens C,2000.The Werner Lake Co-Cu-Au deposit of the English River subprovince,Ontario,Canada:Evidence for an exhalative origin and effects of granulite facies metamorphism[J].Economic Geology,95:1635-1656.
Pan Y, Zhou W, Xu R,et al,1996.Early Paleozoic geological features and evolution of the Kunlun Mountains [J].Science in China(Series D),26(4):302-307.
Putnis A,2009.Mineral replacement reactions[J].Reviews in Mineralogy and Geochemistry,70(1):87-124.
Qian G, Xia F, Brugger J,et al,2011.Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 ℃:An experimental study of reaction textures and mechanisms[J].American Mineralogist,96(11/12):1878-1893.
Qiu Z J, Fan H R, Goldfarb R,et al,2021.Cobalt concentration in a sulfidic sea and mobilization during orogenesis:Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J].Geochimica et Cosmochimica Acta,305:1-18.
Scharrer M, Kreissl S, Markl G,2019.The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J].Ore Geology Reviews,113:103025.
Slack J F,2012.Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt:Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system[J].Economic Geology,107:1089-1113.
Vasyukova O V, Williams-Jones A E,2022.Constraints on the genesis of cobalt deposits:PartⅡ. applications to natural systems[J].Economic Geology,117(3):529-544.
Wang Denghong,2019.Study on critical mineral resources:Significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation[J].Acta Geologica Sinica,93(6):1189-1209.
Wang S, Cao M, Li G,et al,2022a.The occurrence of cobalt and implications for genesis of the Pusangguo cobalt-rich skarn deposit in Gangdese,Tibet[J].Ore Geology Reviews,150:105193.
Wang Y, Wang Z, Chi G,et al,2022b.Mechanisms of Ni Co enrichment in paleo-karstic bauxite deposits:An example from the Maochang deposit,Guizhou Province,SW China[J].Chemical Geology,613:121161.
Wang Yan, Zhong Hong, Cao Yonghua,et al,2020.Genetic classification,distribution and ore genesis of major PGE,Co and Cr deposits in China:A critical review[J].Chinese Science Bulletin,65(33):3825-3838.
Wang Yufei, Wang Zhilin, Lu Anhuai,et al,2021.Discovery of cobalt-rich pyrite in the Yangjiadong ore block of the Maochang bauxite deposit,Guizhou Province and its significance[J].Acta Mineralogica Sinica,41(Supp.1):460-474.
Wang Z L, Wang Y F, Peng E K,et al,2022c.Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit,South China[J].Ore Geology Reviews,142:104721.
Wang Z L, Xu D R, Zhang Z C,et al,2015.Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China[J].Journal of Asian Earth Sciences,113:980-997.
Williams-Jones A E, Vasyukova O V,2022.Constraints on the genesis of cobalt deposits:Part I. theoretical considerations[J].Economic Geology,117(3):513-528.
Wu Y, Evans K, Hu S,et al,2021.Decoupling of Au and As during rapid pyrite crystallization[J].Geology,49:827-831.
Xia R, Wang C M, Qing M,et al,2015.Zircon U-Pb dating,geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos,234:47-60.
Xu Deru, Wang Zhilin, Nie Fengjun,et al,2019.Cobalt resources in China:Current research status and key scientific issues[J].Bulletin of National Natural Science Foundation of China,33(2):125-132.
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong,et al,2019.Critical metal mineral resources:Current research status and scientific issues[J].Bulletin of National Natural Science Foundation of China,33(2):106-111.
Zhang Aikui, Wang Jianjun, Liu Guanglian,et al,2021.Main minerogenetic series in the Qimantag area,Qinghai Province and their metallogenic models[J]. Acta Mineralogica Sinica,41(1):1-22.
Zhang Dequan, She Hongquan, Xu Wenyi,et al,2002a.Geochemical constraint on the metallogenetical geological background and genesis of Tuolugou sedimentary-exhalative cobalt-gold deposit[J].Acta Geoscientica Sinica,23(6):527-534.
Zhang Dequan, Wang Yan, Feng Chengyou,et al,2002b.Geology and geochemistry of Tuolugou exhalative-sedimentary Co-Au deposit,Qinghai Province[J].Mineral Deposits,21(3):213-222.
Zhao Junxing, Li Guangming, Qin Kezhang,et al,2019.A review of the types and ore mechanism of the cobalt deposits[J].Chinese Science Bulletin,64(24):2484-2500.
Zheng J H, Mao J W, Yang F Q,et al,2016.Newly discovered native gold and bismuth in the Cihai iron‐cobalt deposit,Eastern Tianshan,Northwest China[J].Acta Geologica Sinica,90(3):928-938.
Zhu Huaping,2005.Geological Characteristics and Prospecting Potential Evaluation of Tuoluguo Cobalt Deposit,Qinghai Province[D].Changchun:Jilin University.
段俊,钱壮志,黄喜峰,等,2014.青海德尔尼铜(钴)矿床矿石矿物特征及其地质意义[J].地球科学与环境学报,36(1):201-209.
丰成友,张德全,党兴彦,等,2005.青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMP U-Pb定年——对“纳赤台群”时代的制约[J].地质通报,24(6):501-505.
丰成友,张德全,屈文俊,等,2006a.青海格尔木驼路沟喷流沉积型钴(金)矿床的黄铁矿Re-Os定年[J].地质学报,80(4):571-576.
丰成友,张德全,佘宏全,等,2006b.青海驼路沟钴(金)矿床形成的构造环境及钴富集成矿机制[J].矿床地质,25(5):544-561.
丰成友,张德全,王富春,等,2004.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,25(4):415-422.
焦建刚,黄喜峰,袁海潮,等,2009.青海德尔尼铜(钴)矿床研究新进展[J].地球科学与环境学报,31(1):42-47.
奎明娟,张爱奎,刘永乐,等,2019.青海驼路沟钴矿床地质特征及找矿模式[J].矿产勘查,10(1):57-64.
李厚民,沈远超,胡正国,2000.青海东昆仑驼路沟钴(金)矿床地质特征——一种新型的与富钠火山岩有关的钴(金)矿床[J].矿物岩石地球化学通报,19(4):321-322.
李厚民,沈远超,胡正国,等,2001.青海东昆仑驼路沟钴(金)矿床地质特征及成因初探[J].地质与勘探,37(1):60-64,95.
刘永乐,张爱奎,刘智刚,等,2022.青海东昆仑西段金矿成因类型及成矿模式[J].黄金科学技术,30(4):483-497.
卢宜冠,涂家润,孙凯,等,2021.中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J].地学前缘,28(3):338-354.
潘彤,2005.东昆仑成矿带钴矿成矿系列研究[D].长春:吉林大学.
王登红,2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报,93(6):1189-1209.
王焰,钟宏,曹勇华,等,2020.我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J].科学通报,65(33):3825-3838.
王宇非,王智琳,鲁安怀,等,2021.黔中猫场杨家洞矿段铝土矿中富钴黄铁矿的发现与意义[J].矿物学报,41(增1):460-474.
许德如,王智琳,聂逢君,等,2019.中国钴矿资源现状与关键科学问题[J].中国科学基金,33(2):125-132.
翟明国,吴福元,胡瑞忠,等,2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.
张爱奎,王建军,刘光莲,等,2021.青海省祁漫塔格地区主要成矿系列与成矿模式[J].矿物学报,41(1):1-22.
张德全,佘宏全,徐文艺,等,2002a.驼路沟喷气沉积型钴(金)矿床成矿地质背景及矿床成因的地球化学限制[J].地球学报,23(6):527-534.
张德全,王彦,丰成友,等,2002b.驼路沟喷气沉积型钴(金)矿床的地质—地球化学[J].矿床地质,21(3):213-222.
赵俊兴,李光明,秦克章,等,2019.富含钴矿床研究进展与问题分析[J].科学通报,64(24):2484-2500.
朱华平,2005.青海省驼路沟钴矿床地质特征及找矿潜力评价[D].长春:吉林大学.
[1] 寸小妮,薛玉山,王瑜亮,刘新伟. 陕西龙头沟金矿黄铁矿标型特征及其找矿意义[J]. 黄金科学技术, 2023, 31(1): 64-77.
[2] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
[3] 万泰安,许德如,马文,张胜伟,王国建,卞玉冰,李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690.
[4] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[5] 梁改忠,杨奎锋,范宏瑞,李兴辉. 东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义[J]. 黄金科学技术, 2022, 30(1): 19-33.
[6] 王智琳,伍杨,许德如,邹少浩,董国军,彭尔柯,宁钧陶,康博. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.
[7] 温佳伟,史鹏亮,刘彦兵,张静,屈海浪,李元申,胡博心,缪广. 辽宁二道沟金矿床黄铁矿热电性特征及深部找矿预测[J]. 黄金科学技术, 2020, 28(6): 812-824.
[8] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[9] 陈港, 陈懋弘, 马克忠, 葛锐, 郭申祥, 吴启强, 原其生. 广西贵港六梅金矿的成因类型及找矿意义[J]. 黄金科学技术, 2020, 28(4): 479-496.
[10] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[11] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[12] 罗清威,王保国,义爱文,张克川,潘泽,张盛亚. 坦桑尼亚某绿岩带型金矿床中黄铁矿的标型特征及意义[J]. 黄金科学技术, 2019, 27(1): 15-24.
[13] 张蕾蕾, 张静, 王琦崧, 陈良, 陈叙安. 熊耳山地区槐树坪金矿床黄铁矿特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 481-491.
[14] 杨玮, 董萍, 邓忠. 某重选尾矿金浮选试验研究[J]. 黄金科学技术, 2018, 26(2): 203-211.
[15] 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化-提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 采空区专栏主编寄语[J]. 黄金科学技术, 2022, 30(3): 313 -314 .
[2] 郑雨晴,陈勇,王进华,尚雪义,刘彩云. 联合改进作用距离和Dijkstra算法的复杂结构声发射定位方法及应用[J]. 黄金科学技术, 2022, 30(3): 427 -437 .